On the Wiener index of Cohen-Macaulay and very well-covered graphs

被引:0
|
作者
Moghimipor, Roya [1 ]
机构
[1] Islamic Azad Univ, Safadasht Branch, Dept Math, Tehran, Iran
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2021年 / 81卷
关键词
IDEAL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain some lower bounds for the Wiener index of Cohen-Macaulay graphs. We also give a lower bound for the Wiener index of very well-covered graphs.
引用
收藏
页码:46 / 57
页数:12
相关论文
共 50 条
  • [41] A construction of Cohen-Macaulay f-graphs
    Mahmood, H.
    Anwar, I.
    Zafar, M. K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (06)
  • [42] ON COHEN-MACAULAY R-PARTITE GRAPHS
    Jafarpour-Golzari, Reza
    MATHEMATICAL REPORTS, 2020, 22 (3-4): : 395 - 401
  • [43] Cohen-Macaulay oriented graphs with large girth
    Dung, Le Xuan
    Trung, Tran Nam
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2025, 61 (01)
  • [44] COMPLEXITY RESULTS FOR WELL-COVERED GRAPHS
    SANKARANARAYANA, RS
    STEWART, LK
    NETWORKS, 1992, 22 (03) : 247 - 262
  • [45] SYMBOLIC POWERS OF COVER IDEAL OF VERY WELL-COVERED AND BIPARTITE GRAPHS
    Fakhari, S. A. Seyed
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (01) : 97 - 110
  • [46] Index of vector fields at Cohen-Macaulay curves
    Aleksandrov, A. G.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (06): : 791 - 804
  • [47] NONPLANAR GRAPHS AND WELL-COVERED CYCLES
    RICHTER, RB
    DISCRETE MATHEMATICS, 1990, 85 (02) : 221 - 222
  • [48] On the roots of independence polynomials of almost all very well-covered graphs
    Levit, Vadim E.
    Mandrescu, Eugen
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (04) : 478 - 491
  • [49] THE WELL-COVERED DIMENSION OF PRODUCTS OF GRAPHS
    Birnbaum, Isaac
    Kuneli, Megan
    McDonald, Robyn
    Urabe, Katherine
    Vega, Oscar
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (04) : 811 - 827
  • [50] Well-Covered Graphs With Constraints On  ? And d
    Levit, Vadim E.
    Tankus, David
    THEORY OF COMPUTING SYSTEMS, 2023, 67 (06) : 1197 - 1208