Adaptive Online Learning for the Autoregressive Integrated Moving Average Models

被引:0
|
作者
Shao, Weijia [1 ]
Radke, Lukas Friedemann [1 ]
Sivrikaya, Fikret [2 ]
Albayrak, Sahin [1 ,2 ]
机构
[1] Tech Univ Berlin, Fac Elect Engn & Comp Sci, Ernst Reuter Pl 7, D-10587 Berlin, Germany
[2] GT ARC Gemeinnutzige GmbH, Ernst Reuter Pl 7, D-10587 Berlin, Germany
关键词
ARIMA model; time series analysis; online optimization; online model selection; ARMA; IDENTIFICATION;
D O I
10.3390/math9131523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses the problem of predicting time series data using the autoregressive integrated moving average (ARIMA) model in an online manner. Existing algorithms require model selection, which is time consuming and unsuitable for the setting of online learning. Using adaptive online learning techniques, we develop algorithms for fitting ARIMA models without hyperparameters. The regret analysis and experiments on both synthetic and real-world datasets show that the performance of the proposed algorithms can be guaranteed in both theory and practice.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Inflated beta autoregressive moving average models
    Fábio M. Bayer
    Guilherme Pumi
    Tarciana Liberal Pereira
    Tatiene C. Souza
    Computational and Applied Mathematics, 2023, 42
  • [22] ROBUST IDENTIFICATION OF AUTOREGRESSIVE MOVING AVERAGE MODELS
    MASAROTTO, G
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1987, 36 (02): : 214 - 220
  • [23] The specification of vector autoregressive moving average models
    Koreisha, SG
    Pukkila, T
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 547 - 565
  • [24] Stationarity of generalized autoregressive moving average models
    Woodard, Dawn B.
    Matteson, David S.
    Henderson, Shane G.
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 800 - 828
  • [25] Beta seasonal autoregressive moving average models
    Bayer, Fabio M.
    Cintra, Renato J.
    Cribari-Neto, Francisco
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (15) : 2961 - 2981
  • [26] Using autoregressive integrated moving average models for time series analysis of observational data
    Wagner, Brandon
    Cleland, Kelly
    BMJ-BRITISH MEDICAL JOURNAL, 2023, 383
  • [27] Using Nonstationary Season Autoregressive Integrated Moving Average Models in Resource Saving Problems
    Akhmetyanov, R. R.
    Delegodina, L. A.
    Kopylova, N. P.
    Lutsenko, B. N.
    Sobstel, G. M.
    Cheido, G. P.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2008, 44 (04)
  • [28] On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity
    Ling, SQ
    Li, WK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 1184 - 1194
  • [29] Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models
    Doornik, JA
    Ooms, M
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (03) : 333 - 348
  • [30] Using nonstationary season autoregressive integrated moving average models in resource saving problems
    R. R. Akhmetyanov
    L. A. Delegodina
    N. P. Kopylova
    B. N. Lutsenko
    G. M. Sobstel
    G. P. Cheido
    Optoelectronics, Instrumentation and Data Processing, 2008, 44 (4) : 306 - 316