Optimal Regularization Parameter Estimation for Regularized Discriminant Analysis

被引:0
|
作者
Zhu, Lin [1 ]
机构
[1] Univ Sci & Technol China, Hefei 230027, Anhui, Peoples R China
来源
关键词
Dimensionality Reduction; Linear Discriminant Analysis (LDA); Model Selection; RECOGNITION; EFFICIENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regularized linear discriminant analysis (RLDA) is a popular LDA-based method for dimension reduction. Despite its good performance, how to choose the parameter of the regularizer efficiently is still unanswered, especially for multi-class situation. In this paper, we first prove that regularizing LDA is equivalent to augmenting the training set in a specific way and thereby propose an efficient model selection criterion based on the principle of maximum information preservation, extensive experiments prove the usefulness and efficiency of our method.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 50 条
  • [41] OPTIMAL ESTIMATION OF l1-REGULARIZATION PRIOR FROM A REGULARIZED EMPIRICAL BAYESIAN RISK STANDPOINT
    Huang, Hui
    Haber, Eldad
    Horesh, Lior
    INVERSE PROBLEMS AND IMAGING, 2012, 6 (03) : 447 - 464
  • [42] Linear Discriminant Analysis with Adherent Regularization
    Hino, Hideitsu
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015, 2015, 9237 : 368 - 375
  • [43] Linear discriminant analysis with spectral regularization
    Shu, Xin
    Lu, Hongtao
    APPLIED INTELLIGENCE, 2014, 40 (04) : 724 - 731
  • [44] Optimal numerical methods for choosing an optimal regularization parameter
    Okamoto, K.
    Li, B. Q.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2007, 51 (06) : 515 - 533
  • [45] A Novel Estimation of the Regularization Parameter for ε-SVM
    Ortiz-Garcia, E. G.
    Gascon-Moreno, J.
    Salcedo-Sanz, S.
    Perez-Bellido, A. M.
    Portilla-Figueras, J. A.
    Carro-Calvo, L.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, PROCEEDINGS, 2009, 5788 : 34 - 41
  • [46] Using derivative regularization in parameter estimation
    McMasters, RL
    Beck, JV
    INVERSE PROBLEMS IN ENGINEERING, 2000, 8 (04): : 365 - 390
  • [47] A robust interactive estimation of the regularization parameter
    Lima, Williams A.
    Silva, Joao B. C.
    Santos, Darciclea F.
    Costa, Jesse C.
    GEOPHYSICS, 2019, 84 (03) : IM19 - IM33
  • [48] Regularization of Minimum Parameter Attitude Estimation
    Fraiture, Luc
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (03) : 1029 - 1034
  • [49] REGULARIZATION OF MINIMUM PARAMETER ATTITUDE ESTIMATION
    Fraiture, Luc
    THE F. LANDIS MARKLEY ASTRONAUTICS SYMPOSIUM, 2008, 132 : 83 - 94
  • [50] Direct Access to the Optimal Regularization Parameter in Distribution of Relaxation Times Analysis
    Schlueter, Nicolas
    Ernst, Sabine
    Schroeder, Uwe
    CHEMELECTROCHEM, 2020, 7 (16): : 3445 - 3458