Analysis of a two-component series system with a geometric process model

被引:1
|
作者
Lam, Y [1 ]
Zhang, YL [1 ]
机构
[1] SE UNIV,DEPT MECH & MATH,NANJING 210018,PEOPLES R CHINA
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, a geometric process model is introduced for the analysis of a two-component series system with one repairman. For each component, the successive operating times form a decreasing geometric process with exponential distribution, whereas the consecutive repair times constitute an increasing geometric process with exponential distribution, but the replacement times form a renewal process with exponential distribution. By introducing two supplementary variables, a set of partial differential equations is derived. These equations can be solved analytically or numerically. Further, the availability and the rate of occurrence of failure of the system are also determined. (C) 1996 John Wiley & Sons, Inc.
引用
收藏
页码:491 / 502
页数:12
相关论文
共 50 条
  • [11] Geometric energy transfer in two-component systems
    Requist, Ryan
    Li, Chen
    Gross, Eberhard K. U.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2223):
  • [12] Molecular model of a sensor of two-component signaling system
    Ryzhykau, Yury L.
    Orekhov, Philipp S.
    Rulev, Maksim, I
    Vlasov, Alexey V.
    Melnikov, Igor A.
    Volkov, Dmytro A.
    Nikolaev, Mikhail Yu
    Zabelskii, Dmitrii, V
    Murugova, Tatiana N.
    Chupin, Vladimir V.
    Rogachev, Andrey, V
    Gruzinov, Andrey Yu
    Svergun, Dmitri, I
    Brennich, Martha E.
    Gushchin, Ivan Yu
    Soler-Lopez, Montserrat
    Bothe, Arne
    Bueldt, Georg
    Leonard, Gordon
    Engelhard, Martin
    Kuklin, Alexander, I
    Gordeliy, Valentin, I
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [13] Molecular model of a sensor of two-component signaling system
    Yury L. Ryzhykau
    Philipp S. Orekhov
    Maksim I. Rulev
    Alexey V. Vlasov
    Igor A. Melnikov
    Dmytro A. Volkov
    Mikhail Yu. Nikolaev
    Dmitrii V. Zabelskii
    Tatiana N. Murugova
    Vladimir V. Chupin
    Andrey V. Rogachev
    Andrey Yu. Gruzinov
    Dmitri I. Svergun
    Martha E. Brennich
    Ivan Yu. Gushchin
    Montserrat Soler-Lopez
    Arne Bothe
    Georg Büldt
    Gordon Leonard
    Martin Engelhard
    Alexander I. Kuklin
    Valentin I. Gordeliy
    Scientific Reports, 11
  • [14] A small protein that mediates the activation of a two-component system by another two-component system
    Kox, LFF
    Wösten, MMSM
    Groisman, EA
    EMBO JOURNAL, 2000, 19 (08): : 1861 - 1872
  • [15] Analysis of development uniformity in two-component development system
    Kadota, I
    Kosugi, H
    IS&T'S NIP19: INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES, 2003, : 32 - 35
  • [16] Warranty analysis of a two-component system with failure interaction
    Zhang, N.
    Fouladirad, M.
    Barros, A.
    RISK, RELIABILITY AND SAFETY: INNOVATING THEORY AND PRACTICE, 2017, : 2548 - 2551
  • [17] Interaction Analysis of a Two-Component System Using Nanodiscs
    Hoernschemeyer, Patrick
    Liss, Viktoria
    Heermann, Ralf
    Jung, Kirsten
    Hunke, Sabine
    PLOS ONE, 2016, 11 (02):
  • [18] Allocation of Two Redundancies in Two-Component Series Systems
    Zhao, Peng
    Chan, Ping Shing
    Li, Long
    Ng, Hon Keung Tony
    NAVAL RESEARCH LOGISTICS, 2013, 60 (07) : 588 - 598
  • [19] TWO-COMPONENT PROPELLANT GRAIN FOR ROCKET MOTOR Combustion Analysis and Geometric Optimization
    Alazeezi, Mohammed
    Popovic, Nikola P.
    Elek, Predrag M.
    THERMAL SCIENCE, 2022, 26 (02): : 1567 - 1578
  • [20] On allocation of redundancies in two-component series systems
    Zhao, Peng
    Chan, Ping Shing
    Li, Long
    Hon Keung Tony Ng
    OPERATIONS RESEARCH LETTERS, 2013, 41 (06) : 690 - 693