Compact Global Descriptors for Visual Search

被引:7
|
作者
Chandrasekhar, Vijay [1 ]
Lin, Jie [1 ]
Morere, Olivier [1 ,2 ,3 ]
Veillard, Antoine [2 ,3 ]
Goh, Hanlin [1 ,3 ]
机构
[1] Inst Infocomm Res, Singapore, Singapore
[2] Univ Paris 06, Paris, France
[3] CNRS, UMI 2955, Image & Pervas Access Lab, Singapore, Singapore
关键词
QUANTIZATION;
D O I
10.1109/DCC.2015.54
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The first step in an image retrieval pipeline consists of comparing global descriptors from a large database to find a short list of candidate matching images. The more compact the global descriptor, the faster the descriptors can be compared for matching. State-of-the-art global descriptors based on Fisher Vectors are represented with tens of thousands of floating point numbers. While there is significant work on compression of local descriptors, there is relatively little work on compression of high dimensional Fisher Vectors. We study the problem of global descriptor compression in the context of image retrieval, focusing on extremely compact binary representations: 64-1024 bits. Motivated by the remarkable success of deep neural networks in recent literature, we propose a compression scheme based on deeply stacked Restricted Boltzmann Machines (SRBM), which learn lower dimensional non-linear subspaces on which the data lie. We provide a thorough evaluation of several state-of-the-art compression schemes based on PCA, Locality Sensitive Hashing, Product Quantization and greedy bit selection, and show that the proposed compression scheme outperforms all existing schemes.
引用
收藏
页码:333 / 342
页数:10
相关论文
共 50 条
  • [21] Learning Visual Object Categories with Global Descriptors and Local Features
    Pereira, Rui
    Lopes, Luis Seabra
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5816 : 225 - 236
  • [22] Local and global orientation in visual search
    Andrew Found
    Hermann J. Müller
    Perception & Psychophysics, 1997, 59 : 941 - 963
  • [23] Local and global orientation in visual search
    Found, A
    Muller, HJ
    PERCEPTION & PSYCHOPHYSICS, 1997, 59 (06): : 941 - 963
  • [24] Evidence for global processes in visual search
    Zenger, B
    Fahle, M
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1996, 37 (03) : 1368 - 1368
  • [25] Residual enhanced visual vector as a compact signature for mobile visual search
    Chen, David
    Tsai, Sam
    Chandrasekhar, Vijay
    Takacs, Gabriel
    Vedantham, Ramakrishna
    Grzeszczuk, Radek
    Girod, Bernd
    SIGNAL PROCESSING, 2013, 93 (08) : 2316 - 2327
  • [26] Weighted Component Hashing of Binary Aggregated Descriptors for Fast Visual Search
    Duan, Ling-Yu
    Lin, Jie
    Wang, Zhe
    Huang, Tiejun
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (06) : 828 - 842
  • [27] Compact Hash Codes for Efficient Visual Descriptors Retrieval in Large Scale Databases
    Ercoli, Simone
    Bertini, Marco
    Del Bimbo, Alberto
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (11) : 2521 - 2532
  • [28] Compact Visual Data Representation for Multimedia Search and Analytics
    Wang, Shiqi
    Zhang, Xinfeng
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 1326 - 1327
  • [29] Global Descriptors for Visual Pose Estimation of a Noncooperative Target in Space Rendezvous
    Comellini, Anthea
    Le Le Ny, Jerome
    Zenou, Emmanuel
    Espinosa, Christine
    Dubanchet, Vincent
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (06) : 4197 - 4212
  • [30] Learning visual similarity for image retrieval with global descriptors and capsule networks
    Durmus, Duygu
    Gudukbay, Ugur
    Ulusoy, Ozgur
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 20243 - 20263