Compact Global Descriptors for Visual Search

被引:7
|
作者
Chandrasekhar, Vijay [1 ]
Lin, Jie [1 ]
Morere, Olivier [1 ,2 ,3 ]
Veillard, Antoine [2 ,3 ]
Goh, Hanlin [1 ,3 ]
机构
[1] Inst Infocomm Res, Singapore, Singapore
[2] Univ Paris 06, Paris, France
[3] CNRS, UMI 2955, Image & Pervas Access Lab, Singapore, Singapore
关键词
QUANTIZATION;
D O I
10.1109/DCC.2015.54
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The first step in an image retrieval pipeline consists of comparing global descriptors from a large database to find a short list of candidate matching images. The more compact the global descriptor, the faster the descriptors can be compared for matching. State-of-the-art global descriptors based on Fisher Vectors are represented with tens of thousands of floating point numbers. While there is significant work on compression of local descriptors, there is relatively little work on compression of high dimensional Fisher Vectors. We study the problem of global descriptor compression in the context of image retrieval, focusing on extremely compact binary representations: 64-1024 bits. Motivated by the remarkable success of deep neural networks in recent literature, we propose a compression scheme based on deeply stacked Restricted Boltzmann Machines (SRBM), which learn lower dimensional non-linear subspaces on which the data lie. We provide a thorough evaluation of several state-of-the-art compression schemes based on PCA, Locality Sensitive Hashing, Product Quantization and greedy bit selection, and show that the proposed compression scheme outperforms all existing schemes.
引用
收藏
页码:333 / 342
页数:10
相关论文
共 50 条
  • [1] Compact Descriptors for Visual Search
    Duan, Ling-Yu
    Lin, Jie
    Chen, Jie
    Huang, Tiejun
    Gao, Andwen
    IEEE MULTIMEDIA, 2014, 21 (03) : 30 - 40
  • [2] Feature Matching Performance of Compact Descriptors for Visual Search
    Chandrasekhar, Vijay
    Takacs, Gabriel
    Chen, David M.
    Tsai, Sam S.
    Makar, Mina
    Girod, Bernd
    2014 DATA COMPRESSION CONFERENCE (DCC 2014), 2014, : 3 - 12
  • [3] Compact Descriptors for Mobile Visual Search and MPEG CDVS Standardization
    Duan, Ling-Yu
    Gao, Feng
    Chen, Jie
    Lin, Jie
    Huang, Tiejun
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 885 - 888
  • [4] Local detectors and compact descriptors for visual search: A quantitative comparison
    Bianco, S.
    Mazzini, D.
    Pau, D. P.
    Schettini, R.
    DIGITAL SIGNAL PROCESSING, 2015, 44 : 1 - 13
  • [5] Learning Compact Visual Descriptors for Low Bit Rate Mobile Landmark Search
    Duan, Ling-Yu
    Chen, Jie
    Ji, Rongrong
    Huang, Tiejun
    Gao, Wen
    AI MAGAZINE, 2013, 34 (02) : 67 - 85
  • [6] Leveraging local and global descriptors in parallel to search correspondences for visual localization
    Zhang, Pengju
    Zhang, Chaofan
    Liu, Bingxi
    Wu, Yihong
    Pattern Recognition, 2022, 122
  • [7] Leveraging local and global descriptors in parallel to search correspondences for visual localization
    Zhang, Pengju
    Zhang, Chaofan
    Liu, Bingxi
    Wu, Yihong
    PATTERN RECOGNITION, 2022, 122
  • [8] Learnable Descriptors for Visual Search
    Migliorati, Andrea
    Fiandrotti, Attilio
    Francini, Gianluca
    Leonardi, Riccardo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 (30) : 80 - 91
  • [9] From Visual Search to Video Compression: A Compact Representation Framework for Video Feature Descriptors
    Zhang, Xiang
    Ma, Siwei
    Wang, Shiqi
    Wang, Shanshe
    Zhang, Xinfeng
    Gao, Wen
    2016 DATA COMPRESSION CONFERENCE (DCC), 2016, : 407 - 416
  • [10] Compact Global Descriptor for Visual Search using Sparse Coding
    Lee, Jun-Woo
    Kang, Jong-Wook
    Jeong, Jae-Hyup
    Jeong, Dong-Seok
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2012, 12 (12): : 43 - 47