HYSTERESIS-DRIVEN PATTERN FORMATION IN REACTION-DIFFUSION-ODE SYSTEMS

被引:22
|
作者
Koethe, Alexandra [1 ,2 ]
Marciniak-Czochra, Anna [3 ,4 ]
Takagi, Izumi [5 ,6 ]
机构
[1] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Bioquant, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Inst Appl Math, Bioquant, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
[5] Renmin Univ China, Inst Math Sci, Beijing 100872, Peoples R China
[6] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Reaction-diffusion-ODE system; pattern formation; bistable kinetics; hysteresis; stationary solution with jump discontinuity; asymptotic stability; RECEPTOR-BASED MODELS; TURING INSTABILITY;
D O I
10.3934/dcds.2020170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to analysis of far-from-equilibrium pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular processes and diffusing growth factors. Pattern formation results from hysteresis in the dependence of the quasi-stationary solution of the ODE on the diffusive component. Bistability alone, without hysteresis, does not result in stable patterns. We provide a systematic description of the hysteresis-driven stationary solutions, which may be monotone, periodic or irregular. We prove existence of infinitely many stationary solutions with jump discontinuity and their asymptotic stability for a certain class of reaction-diffusion-ODE systems. Nonlinear stability is proved using direct estimates of the model nonlinearities and properties of the strongly continuous diffusion semigroup.
引用
收藏
页码:3595 / 3627
页数:33
相关论文
共 50 条
  • [21] Rethinking pattern formation in reaction–diffusion systems
    J. Halatek
    E. Frey
    Nature Physics, 2018, 14 : 507 - 514
  • [22] PATTERN FORMATION IN CHEMOTAXIC REACTION-DIFFUSION SYSTEMS
    Shoji, Hiroto
    Saitoh, Keitaro
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2012, 5 (03)
  • [23] Fronts and pattern formation in reaction-diffusion systems
    Droz, M
    ANOMALOUS DIFFUSION: FROM BASICS TO APPLICATIONS, 1999, 519 : 211 - 220
  • [24] Pattern formation in reaction diffusion systems: a Galerkin model
    A. Bhattacharyay
    J.K. Bhattacharjee
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 561 - 566
  • [25] Pattern formation in reaction diffusion systems: a Galerkin model
    Bhattacharyay, A
    Bhattacharjee, JK
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (04): : 561 - 566
  • [26] Pattern formation mechanisms in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2009, 53 (5-6): : 673 - 681
  • [27] Rethinking pattern formation in reaction-diffusion systems
    Halatek, J.
    Frey, E.
    NATURE PHYSICS, 2018, 14 (05) : 507 - +
  • [28] PATTERN-FORMATION AND PATTERN SELECTION IN REACTION DIFFUSION-SYSTEMS
    EILBECK, JC
    THEORETICAL BIOLOGY: EPIGENETIC AND EVOLUTIONARY ORDER FROM COMPLEX SYSTEMS, 1989, : 31 - 41
  • [29] Cross-diffusion and pattern formation in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (06) : 897 - 912
  • [30] Relaxation Behavior and Pattern Formation in Reaction-Diffusion Systems
    Hanusse, P.
    Perez-Munuzuri, V.
    Gomez-Gesteira, M.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 1994, 415 (05):