Distinct distances with lp metrics

被引:0
|
作者
Matthews, Polly, Jr.
AlQady, Moaaz [1 ]
Chabot, Riley [2 ]
Dudarov, William [3 ]
Ge, Linus [4 ]
Juvekar, Mandar [4 ]
Kundeti, Srikanth [5 ]
Kundu, Neloy [6 ]
Lu, Kevin [7 ]
Moreno, Yago [8 ]
Peng, Sibo [9 ]
Speas, Samuel [10 ]
Starzycka, Julia [11 ]
Steinthal, Henry [6 ]
Vitko, Anastasiia [12 ]
机构
[1] Amer Univ Cairo, New Cairo, Egypt
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Carleton Coll, Northfield, MN 55057 USA
[4] Univ Rochester, Rochester, NY 14627 USA
[5] Rutgers State Univ, New Brunswick, NJ USA
[6] Lafayette Coll, Easton, PA 18042 USA
[7] Georgia Inst Technol, Atlanta, GA 30332 USA
[8] Univ Bristol, Bristol, Avon, England
[9] North Carolina State Univ, Raleigh, NC 27695 USA
[10] Univ Calif Berkeley, Berkeley, CA 94720 USA
[11] Univ Illinois, Chicago, IL 60680 USA
[12] Wesleyan Univ, Middletown, CT 06459 USA
关键词
Distinct distances; Distance metrics; Geometric incidences; Discrete geometry; SETS; NUMBER;
D O I
10.1016/j.comgeo.2021.101785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Ercles's distinct distances problem under l(p) metrics with integer p. We prove that, for every epsilon > 0 and n points in R-2, there exists a point that spans Omega(n(6/7-epsilon)) distinct distances with the other n - 1 points. This improves upon the previous best bound of Omega(n(4/5)). We also characterize the sets that span an asymptotically minimal number of distinct distances under the l(1) and l(infinity) metrics. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:12
相关论文
共 50 条