Parameter stability and semiparametric inference in time varying auto-regressive conditional heteroscedasticity models

被引:12
|
作者
Truquet, Lionel [1 ,2 ]
机构
[1] Univ Rennes, Bruz, France
[2] Ecole Natl Stat & Anal & Informat, Campus Ker Lann,Rue Blaise Pascal,BP 37203, F-35172 Bruz, France
关键词
Auto-regressive conditional heteroscedasticity processes; Kernel smoothing; Locally stationary time series; Semiparametric inference; SERIES; NONSTATIONARITIES;
D O I
10.1111/rssb.12221
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a complete methodology for detecting time varying or non-time-varying parameters in auto-regressive conditional heteroscedasticity (ARCH) processes. For this, we estimate and test various semiparametric versions of time varying ARCH models which include two well-known non-stationary ARCH-type models introduced in the econometrics literature. Using kernel estimation, we show that non-time-varying parameters can be estimated at the usual parametric rate of convergence and, for Gaussian noise, we construct estimates that are asymptotically efficient in a semiparametric sense. Then we introduce two statistical tests which can be used for detecting non-time-varying parameters or for testing the second-order dynamics. An information criterion for selecting the number of lags is also provided. We illustrate our methodology with several real data sets.
引用
收藏
页码:1391 / 1414
页数:24
相关论文
共 50 条
  • [21] Spatially varying auto-regressive models for prediction of new human immunodeficiency virus diagnoses
    Shand, Lyndsay
    Li, Bo
    Park, Trevor
    Albarracin, Dolores
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (04) : 1003 - 1022
  • [22] Auto-regressive model based input and parameter estimation for nonlinear finite element models
    Castiglione, Juan
    Astroza, Rodrigo
    Azam, Saeed Eftekhar
    Linzell, Daniel
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 143
  • [23] On the Modeling of Discrete Time Auto-Regressive Representations
    Moysis, Lazaros
    Karampetakis, Nicholas P.
    2014 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2014, : 381 - 386
  • [24] DARSI: A deep auto-regressive time series inference architecture for forecasting of aerodynamic parameters
    Pandey, Aayush
    Mahajan, Jeevesh
    Srinag, P.
    Rastogi, Aditya
    Roy, Arnab
    Chakrabarti, Partha P.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
  • [25] Monitoring parameter change for time series models with conditional heteroscedasticity
    Huh, Jaewon
    Oh, Haejune
    Lee, Sangyeol
    ECONOMICS LETTERS, 2017, 152 : 66 - 70
  • [26] Parametric modeling of hypersonic ballistic data based on time varying auto-regressive model
    HU YuDong
    LI JunLong
    ZHANG Zhao
    JING WuXing
    GAO ChangSheng
    Science China(Technological Sciences), 2020, 63 (08) : 1396 - 1405
  • [27] Estimation of Auto-Regressive models for time series using Binary or Quantized Data
    Auber, R.
    Pouliquen, M.
    Pigeon, E.
    M'Saad, M.
    Gehan, O.
    Chapon, P. A.
    Moussay, S.
    IFAC PAPERSONLINE, 2018, 51 (15): : 581 - 586
  • [28] Forecast approach using neural network adaptation to support vector regression grey model and generalized auto-regressive conditional heteroscedasticity
    Chang, Bao Rong
    Tsai, Hsiu Fen
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (02) : 925 - 934
  • [29] Parametric modeling of hypersonic ballistic data based on time varying auto-regressive model
    Hu YuDong
    Li JunLong
    Zhang Zhao
    Jing WuXing
    Gao ChangSheng
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (08) : 1396 - 1405
  • [30] Parametric modeling of hypersonic ballistic data based on time varying auto-regressive model
    YuDong Hu
    JunLong Li
    Zhao Zhang
    WuXing Jing
    ChangSheng Gao
    Science China Technological Sciences, 2020, 63 : 1396 - 1405