Long-time dynamics of Kirchhoff equations with exponential nonlinearities

被引:3
|
作者
Ma, Honglv [1 ]
Chen, Biyue [2 ]
Xie, Jun [3 ]
机构
[1] Southeast Univ Nanjing, Sch Math, Nanjing 211189, Peoples R China
[2] Nanjing Univ Nanjing, Dept Math, Nanjing 210093, Peoples R China
[3] Nanjing Xiaozhuang Univ Nanjing, Coll Elect Engn, Nanjing 211171, Peoples R China
关键词
WAVE-EQUATIONS; ASYMPTOTIC STABILITY; GLOBAL-SOLUTIONS; ATTRACTORS;
D O I
10.1063/1.5123387
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our aim in this paper is to study the initial boundary problem for the two-dimensional Kirchhoff type wave equation with an exponentially growing source term. We first prove that the Kirchhoff wave model is globally well-posed in (H01(Omega)L infinity(Omega))xL2(Omega), which covers the case of degenerate stiffness coefficient, and then obtain that the semigroup generated by the problem has a global attractor in the corresponding phase space. We also point out that the above results are still true in the natural energy space H01(Omega)xL2(Omega). Published under license by AIP Publishing.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] ADIABATIC SWITCHING AND LONG-TIME CORRECTIONS TO THE EXPONENTIAL DECAY LAW
    ROBINSON, EJ
    PHYSICAL REVIEW A, 1986, 33 (03): : 1461 - 1463
  • [42] Long-time behavior for suspension bridge equations with time delay
    Sun-Hye Park
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [43] Long-time behavior for suspension bridge equations with time delay
    Park, Sun-Hye
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [44] The Ground State Solutions for Kirchhoff-Schr?dinger Type Equations with Singular Exponential Nonlinearities in R~N
    Yanjun LIU
    Chungen LIU
    ChineseAnnalsofMathematics,SeriesB, 2022, (04) : 549 - 566
  • [45] The ground state solution for biharmonic Kirchhoff-Schrodinger equations with singular exponential nonlinearities in R4
    Liu, Yanjun
    Qi, Shijie
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (03)
  • [46] Long-time averaging for integrable Hamiltonian dynamics
    Cancès, E
    Castella, F
    Chartier, P
    Faou, E
    Le Bris, C
    Legoll, F
    Turinici, G
    NUMERISCHE MATHEMATIK, 2005, 100 (02) : 211 - 232
  • [47] Long-time dynamics of self-dressing
    Compagno, G
    Valenti, D
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (19) : 4705 - 4717
  • [48] RANDOM SEQUENTIAL ADSORPTION - LONG-TIME DYNAMICS
    BARAM, A
    FIXMAN, M
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (05): : 1929 - 1933
  • [49] Long-time averaging for integrable Hamiltonian dynamics
    Eric Cancès
    François Castella
    Philippe Chartier
    Erwan Faou
    Claude Le Bris
    Frédéric Legoll
    Gabriel Turinici
    Numerische Mathematik, 2005, 100 : 211 - 232
  • [50] Long-time tails in the dynamics of Rouse polymers
    Tothova, J
    Lisy, V
    Zatovsky, AV
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (24): : 13135 - 13137