On asymptotic depth of integral closure filtration and an application

被引:0
|
作者
Puthenpurakal, Tony J. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
关键词
Integral closure filtration; m-Full ideals; Asymptotic depth; RATLIFF-RUSH FILTRATION; REGULARITY;
D O I
10.1016/j.jalgebra.2020.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (A, m) be an analytically unramified formally equidimensional Noetherian local ring with depth A >= 2. Let I be an m-primary ideal and set I* to be the integral closure of I. Set G*(I) = circle plus(n >= 0)(I-n)*/(In+1)* be the associated graded ring of the integral closure filtration of I. We prove that depth G* (I-n) >= 2 for all n >> 0. As an application we prove that if A is also an excellent normal domain containing an algebraically closed field isomorphic to A/m then there exists so such that for all s >= s(0) and J is an integrally closed ideal strictly containing (m(s))* then we have a strict inequality mu(J) < mu((m(s))*) (here mu(J) is the number of minimal generators of J). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [21] ASYMPTOTIC-FILTRATION AND POLES OF INTEGRAL-X-ABSOLUTE-VALUE-OF-F-2-LAMBDA-CLASS
    BARLET, D
    ASTERISQUE, 1989, (179-80) : 13 - 37
  • [22] An asymptotic series for an integral
    Michael E. Hoffman
    Markus Kuba
    Moti Levy
    Guy Louchard
    The Ramanujan Journal, 2020, 53 : 1 - 25
  • [23] Asymptotic Complexity in Filtration Equations
    J. A. Carrillo
    J. L. Vázquez
    Journal of Evolution Equations, 2007, 7 : 471 - 495
  • [24] The Asymptotic Samuel Function of a Filtration
    Cutkosky, Steven Dale
    Praharaj, Smita
    ACTA MATHEMATICA VIETNAMICA, 2024, 49 (01) : 61 - 81
  • [25] Asymptotic complexity in filtration equations
    Carrillo, J. A.
    Vazquez, J. L.
    JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (03) : 471 - 495
  • [26] DERIVATIONS AND INTEGRAL CLOSURE
    SEIDENBERG, A
    PACIFIC JOURNAL OF MATHEMATICS, 1966, 16 (01) : 167 - +
  • [27] On computing the integral closure
    Matsumoto, R
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (01) : 401 - 405
  • [28] On the integral closure of ideals
    Corso, A
    Huneke, C
    Vasconcelos, WV
    MANUSCRIPTA MATHEMATICA, 1998, 95 (03) : 331 - 347
  • [29] FINITENESS OF INTEGRAL CLOSURE
    MANGENEY, MM
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1966, 94 (04): : 277 - &
  • [30] On the complexity of the integral closure
    Ulrich, B
    Vasconcelos, WV
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) : 425 - 442