Machine Learning and Deep Learning Strategies to Identify Posidonia Meadows in Underwater Images

被引:0
|
作者
Gonzalez-Cid, Yolanda [1 ]
Burguera, Antoni [1 ]
Bonin-Font, Francisco [1 ]
Matamoros, Alejandro [1 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Ctra Valldemossa Km 7-5, Palma De Mallorca 07122, Spain
来源
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper describes how to automatically identify Posidonea Oceanica (P.O.) from seabed images gathered by a bottom-looking camera. Different methods based on machine learning and deep learning algorithms are presented and compared. On the one hand, texture descriptors and co-occurrence matrices are used to characterize the images and classify the P.O. regions by means of Support Vector Machine and Artificial Neural Networks. On the other hand, Convolutional Neural Networks are used in the Deep Learning approach. The experimental results obtained demonstrate the effectiveness of the algorithms proposed to automatically identify P.O. meadows in underwater images.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] AI applications to medical images: From machine learning to deep learning
    Castiglioni, Isabella
    Rundo, Leonardo
    Codari, Marina
    Leo, Giovanni Di
    Salvatore, Christian
    Interlenghi, Matteo
    Gallivanone, Francesca
    Cozzi, Andrea
    D'Amico, Natascha Claudia
    Sardanelli, Francesco
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 9 - 24
  • [12] Deep Learning and Machine Learning for Object Detection in Remote Sensing Images
    Yang, Guowei
    Luo, Qiang
    Yang, Yinding
    Zhuang, Yin
    SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, 2018, 473 : 249 - 256
  • [13] RETRACTION: A Deep Learning Approach to Detecting Objects in Underwater Images
    Kalaiarasi, G.
    Ashok, J.
    Saritha, B.
    Prabu, M. Manoj
    CYBERNETICS AND SYSTEMS, 2024,
  • [14] Diving into Clarity: Restoring Underwater Images using Deep Learning
    Laura A. Martinho
    João M. B. Calvalcanti
    José L. S. Pio
    Felipe G. Oliveira
    Journal of Intelligent & Robotic Systems, 2024, 110
  • [15] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF CORAL IMAGES IN UNDERWATER PHOTOGRAMMETRY
    Zhang, Hanqi
    Gruen, Armin
    Li, Ming
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 5-2 : 343 - 350
  • [16] Deep Learning Approach For Objects Detection in Underwater Pipeline Images
    Gasparovic, Boris
    Lerga, Jonatan
    Mausa, Goran
    Ivasic-Kos, Marina
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [17] Diving into Clarity: Restoring Underwater Images using Deep Learning
    Martinho, Laura A.
    Calvalcanti, Joao M. B.
    Pio, Jose L. S.
    Oliveira, Felipe G.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (01)
  • [18] Machine Learning Methods for Acoustic-based Automatic Posidonia Meadows Detection by means of Unmanned Marine Vehicles
    Ferretti, Roberta
    Bibuli, Marco
    Caccia, Massimo
    Chiarella, Davide
    Odetti, Angelo
    Ranieri, Andrea
    Zereik, Enrica
    Bruzzone, Gabriele
    OCEANS 2017 - ABERDEEN, 2017,
  • [19] Deep learning model to identify angle dysgenesis on ASOCT images
    Dhakonia, Shweta Birla
    ACTA OPHTHALMOLOGICA, 2022, 100
  • [20] Using Deep Learning on Satellite Images to Identify Deforestation/Afforestation
    Mhatre, Apurva
    Mudaliar, Navin Kumar
    Narayanan, Mahadevan
    Gurav, Aaditya
    Nair, Ajun
    Nair, Akash
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1078 - 1084