Machine Learning and Deep Learning Strategies to Identify Posidonia Meadows in Underwater Images

被引:0
|
作者
Gonzalez-Cid, Yolanda [1 ]
Burguera, Antoni [1 ]
Bonin-Font, Francisco [1 ]
Matamoros, Alejandro [1 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Ctra Valldemossa Km 7-5, Palma De Mallorca 07122, Spain
来源
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper describes how to automatically identify Posidonea Oceanica (P.O.) from seabed images gathered by a bottom-looking camera. Different methods based on machine learning and deep learning algorithms are presented and compared. On the one hand, texture descriptors and co-occurrence matrices are used to characterize the images and classify the P.O. regions by means of Support Vector Machine and Artificial Neural Networks. On the other hand, Convolutional Neural Networks are used in the Deep Learning approach. The experimental results obtained demonstrate the effectiveness of the algorithms proposed to automatically identify P.O. meadows in underwater images.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A Machine Learning approach to the assessment of the vulnerability of Posidonia oceanica meadows
    Catucci, Elena
    Scardi, Michele
    ECOLOGICAL INDICATORS, 2020, 108
  • [2] Machine Learning and Deep Learning Strategies in Drug Repositioning
    Wang, Fei
    Ding, Yulian
    Lei, Xiujuan
    Liao, Bo
    Wu, Fang-Xiang
    CURRENT BIOINFORMATICS, 2022, 17 (03) : 217 - 237
  • [3] Segmentation of underwater images using morphology for deep learning
    Lee, Ji-Eun
    Lee, Chul-Won
    Park, Seok-Joon
    Shin, Jea-Beom
    Jung, Hyun-Gi
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2023, 42 (04): : 370 - 376
  • [4] Instance Segmentation of Underwater Images by Using Deep Learning
    Chen, Jianfeng
    Zhu, Shidong
    Luo, Weilin
    ELECTRONICS, 2024, 13 (02)
  • [5] A Deep Learning Approach to Detecting Objects in Underwater Images
    Kalaiarasi, G.
    Ashok, J.
    Saritha, B.
    Prabu, M. Manoj
    CYBERNETICS AND SYSTEMS, 2023,
  • [6] Evaluation of Deep Learning Strategies for Underwater Object Search
    Knapik, Mateusz
    Cyganek, Boguslaw
    2019 FIRST INTERNATIONAL CONFERENCE ON SOCIETAL AUTOMATION (SA), 2019,
  • [7] Utilizing Image Analysis with Machine Learning and Deep Learning to Identify Malaria Parasites in Conventional Microscopic Blood Smear Images
    Kundu, Tamal Kumar
    Anguraj, Dinesh Kumar
    Bhattacharyya, Debnath
    TRAITEMENT DU SIGNAL, 2024, 41 (01) : 343 - 362
  • [8] Deep images enhancement for turbid underwater images based on unsupervised learning
    Zhou, Wen-Hui
    Zhu, Deng-Ming
    Shi, Min
    Li, Zhao-Xin
    Duan, Ming
    Wang, Zhao-Qi
    Zhao, Guo-Liang
    Zheng, Cheng-Dong
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 202
  • [9] Matching Color Aerial Images and Underwater Sonar Images Using Deep Learning for Underwater Localization
    Dos Santos, Matheus Machado
    De Giacomo, Giovanni G.
    Drews-Jr, Paulo L. J.
    Botelho, Silvia S. C.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04): : 6365 - 6370
  • [10] Development and Validation of Machine Learning and Deep Learning Models to Identify Human Monkeypox
    Nieva, Harry Reyes
    DeLaurentis, Clare
    Elhadad, Noemie
    Gunaratne, Shauna
    McLean, Jacob
    Tucker, Emma
    Zucker, Jason
    SEXUALLY TRANSMITTED DISEASES, 2024, 51 (01) : S228 - S229