Non-linear modeling of parabolic reflector: Neural network approach

被引:0
|
作者
Yilmaz, A [1 ]
Saka, B [1 ]
机构
[1] Hacettepe Univ, Dept Elect & Elect Engn, TR-06532 Ankara, Turkey
关键词
D O I
10.1080/02726349908908634
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present artifical neural network (ANN) models for the calculation of the focal region fields of a parabolic reflector and the estimation of the direction of arrival. We choose a feedforward NN architecture (specifically multilayer perceptrons (MLPs)) for their robust and massively interconnected structure. Simulated results achieved with these models show that the neural network approach is a promising alternative to the conventional methods for focal region calculations of the parabolic reflectors. This paper also represents the results obtained from a NN model trained for the estimation of the direction of arrival for the array-fed parabolic reflector.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [21] A general approach to non-linear output observer design using neural network models
    Fretheim, T
    Shoureshi, R
    Vincent, T
    Torgerson, D
    Work, J
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 924 - 928
  • [22] Non-linear Adaptive Controllers with Linear Dynamic Compensator and Neural Network
    Mihai, Lungu
    Romulus, Lungu
    PROCEEDINGS OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL, MODELLING AND SIMULATION: CONTROLLING, MODELLING AND SIMULATION, 2009, : 334 - +
  • [23] Impedance network modeling of non-linear restistive material
    Belijar, G.
    Hermette, L.
    Kozako, M.
    Hikita, M.
    2018 IEEE 2ND INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), 2018,
  • [24] A NON-LINEAR EQUATION OF PARABOLIC TYPE
    BITSADZE, AV
    DOKLADY AKADEMII NAUK SSSR, 1982, 264 (06): : 1293 - 1294
  • [25] On a non-linear parabolic problem with an obstacle
    Solonukha, OV
    RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (03) : 591 - 592
  • [26] Non-linear dynamical system approach to behavior modeling
    Goldenstein, S
    Large, E
    Metaxas, D
    VISUAL COMPUTER, 1999, 15 (7-8): : 349 - 364
  • [27] Non-linear dynamical system approach to behavior modeling
    Goldenstein, Siome
    Large, Edward
    Metaxas, Dimitris
    Visual Computer, 1999, 15 (07): : 349 - 364
  • [28] Non-linear dynamical system approach to behavior modeling
    Siome Goldenstein
    Edward Large
    Dimitris Metaxas
    The Visual Computer, 1999, 15 : 349 - 364
  • [29] Adaptable neural networks for modeling recursive non-linear systems
    Doulamis, N
    Doulamis, A
    Varvarigou, T
    DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 1191 - 1194
  • [30] Non-linear system modeling using LSTM neural networks
    Gonzalez, Jesus
    Yu, Wen
    IFAC PAPERSONLINE, 2018, 51 (13): : 485 - 489