A symmetrizable extension of polyconvex thermoelasticity and applications to zero-viscosity limits and weak-strong uniqueness

被引:5
|
作者
Christoforou, Cleopatra [1 ]
Galanopoulou, Myrto [2 ]
Tzavaras, Athanasios E. [2 ]
机构
[1] Univ Cyprus, Dept Math & Stat, Nicosia, Cyprus
[2] King Abdullah Univ Sci & Technol, Comp Elect Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
Polyconvexity; thermoelasticity; thermoviscoelasticity; weak-strong uniqueness; zero-viscosity limits; STRESS-RELAXATION; THERMODYNAMICS; EQUATIONS; SYSTEMS; MODELS;
D O I
10.1080/03605302.2018.1456551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We embed the equations of polyconvex thermoviscoelasticity into an augmented, symmetrizable, hyperbolic system and derive a relative entropy identity in the extended variables. Following the relative entropy formulation, we prove the convergence from thermoviscoelasticity with Newtonian viscosity and Fourier heat conduction to smooth solutions of the system of adiabatic thermoelasticity as both parameters tend to zero. Also, convergence from thermoviscoelasticity to smooth solutions of thermoelasticity in the zero-viscosity limit. Finally, we establish a weak-strong uniqueness result for the equations of adiabatic thermoelasticity in the class of entropy weak solutions.
引用
收藏
页码:1019 / 1050
页数:32
相关论文
共 4 条