Application of phase contrast imaging atomic force microscopy to tribofilms on DLC coatings

被引:32
|
作者
Ahn, HS
Chizhik, SA
Dubravin, AM
Kazachenko, VP
Popov, VV
机构
[1] Korea Inst Sci & Technol, Tribol Res Ctr, Songbuk Gu, Seoul 136791, South Korea
[2] Met Polymer Res Inst, Gomel, BELARUS
[3] Belarussian State Transportat Univ, Gomel, BELARUS
关键词
atomic force microscopy; phase contrast image; stiffness; DLC coating; tribofilm;
D O I
10.1016/S0043-1648(01)00694-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Tribofilms formed in the rubbing surfaces are closely related to wear mechanisms and steady-state friction in sliding contacts. However, their small thickness, inhomogeneity and discontinuity are the factors that hinder the evaluation of their micromechanical properties. The phase contrast images in tapping mode atomic force microscopy allow an estimation of inhomogeneity in micromechanical properties of the sample surfaces. The purpose of this investigation is to examine how the phase contrast images contribute to the characterization of thin tribofilms. Surfaces of diamond-like-carbon (DLC) coatings before and after friction contact against a steel ball slider were investigated in this study. The chemical characteristics of the worn surfaces were studied by micro-Raman spectroscopy, Auger electron spectroscopy (AES) and secondary ion mass spectroscopy (SIMS) and these results were discussed in association with the phase contrast images. A three-dimensional simulation of the real contact area was also conducted and the pressure distribution obtained by this simulation was compared with the phase contrast image obtained at the same area. The phase contrast images revealed a significant inhomogeneity of the worn surfaces. Thin tribofilms were formed at the real contact regions and their thickness increased at the locations experiencing higher contact pressure. The tribofilms that represented as darker grey scale values indicated that they were less stiff than the initial DLC coating. The comparison of the phase contrast images with the results of micro-Raman, AES and SIMS analyses led to a speculation that the tribolfilms, composed almost of carbon element, tray be graphite films or films mainly possessing graphitic property. The phase contrast imaging in atomic force microscopy showed promise as an effective tool for better understanding micromechanical properties of worn surfaces and wear mechanisms. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:617 / 625
页数:9
相关论文
共 50 条
  • [31] Imaging of viruses by atomic force microscopy
    Kuznetsov, YG
    Malkin, AJ
    Lucas, RW
    Plomp, M
    McPherson, A
    JOURNAL OF GENERAL VIROLOGY, 2001, 82 : 2025 - 2034
  • [32] IMAGING OF POLYDIACETYLENES BY ATOMIC FORCE MICROSCOPY
    YAMADA, H
    OKADA, S
    FUJII, T
    KAGESHIMA, M
    KAWAZU, A
    MATSUDA, H
    NAKANISHI, H
    NAKAYAMA, K
    APPLIED SURFACE SCIENCE, 1993, 65-6 : 366 - 370
  • [33] Phase imaging and stiffness in tapping-mode atomic force microscopy
    Magonov, SN
    Elings, V
    Whangbo, MH
    SURFACE SCIENCE, 1997, 375 (2-3) : L385 - L391
  • [34] Atomic force microscopy imaging of liposomes
    Jass, J
    Tjärnhage, T
    Puu, G
    LIPOSOMES, PT A, 2003, 367 : 199 - 213
  • [35] Imaging polysaccharides by atomic force microscopy
    Kirby, AR
    Gunning, AP
    Morris, VJ
    BIOPOLYMERS, 1996, 38 (03) : 355 - 366
  • [36] Imaging fibers by atomic force microscopy
    Carter, MMC
    McIntyre, NS
    Davidson, R
    King, HW
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (03): : 1867 - 1869
  • [37] Fidelity imaging for atomic force microscopy
    Ghosal, Sayan
    Salapaka, Murti
    APPLIED PHYSICS LETTERS, 2015, 106 (01)
  • [38] Imaging by touching: Atomic force microscopy
    Ariel Schwartz, Gustavo
    Navarro, Jaume
    PHILOSOPHY OF PHOTOGRAPHY, 2018, 9 (01) : 41 - 52
  • [39] Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films
    Scott, WW
    Bhushan, B
    ULTRAMICROSCOPY, 2003, 97 (1-4) : 151 - 169
  • [40] Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
    Lee, Alex J.
    Sakai, Yuki
    Chelikowsky, James R.
    PHYSICAL REVIEW B, 2017, 95 (08)