Generalized class-specific kernelized extreme learning machine for multiclass imbalanced learning

被引:24
|
作者
Raghuwanshi, Bhagat Singh [1 ]
Shukla, Sanyam [1 ]
机构
[1] Maulana Azad Natl Inst Technol MANIT, Dept Comp Sci & Engn, Bhopal 462003, Madhya Pradesh, India
关键词
Kernelized extreme learning machine; Generalized class-specific kernelized; extreme learning machine; Multiclass imbalanced learning; Classification; ROC CURVE; CLASSIFICATION; FRAUD; AREA;
D O I
10.1016/j.eswa.2018.12.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Class imbalanced learning is a well-known issue, which exists in real-world applications. Datasets that have skewed class distribution raise hindrance to the traditional learning algorithms. Traditional classifiers give the same importance to all the samples, which leads to the prediction biased towards the majority classes. To solve this intrinsic deficiency, numerous strategies have been proposed such as weighted extreme learning machine (WELM), weighted support vector machine (WSVM), class-specific extreme learning machine (CS-ELM) and class-specific kernelized extreme learning machine (CSKELM). This work focuses on multiclass imbalance problems, which are more difficult compared to the binary class imbalance problems. Kernelized extreme learning machine (KELM) yields better results compared to the traditional extreme learning machine (ELM), which uses random input parameters. This work presents a generalized CSKELM (GCSKELM), the extension of our recently proposed CSKELM, which addresses the multiclass imbalanced problems more effectively. The proposed GCSKELM can be applied directly to solve the multiclass imbalanced problems. GCSKELM with Gaussian kernel function avoids the non-optimal hidden node problem associated with CS-ELM and other existing variants of ELM. The proposed work also has less computational cost in contrast with kernelized WELM (KWELM) for multiclass imbalanced learning. This work employs class-specific regularization parameters, which are determined by employing class proportion. The extensive experimental analysis shows that the proposed work obtains promising generalization performance in contrast with the other state-of-the-art imbalanced learning methods. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 255
页数:12
相关论文
共 50 条
  • [41] Evolutionary extreme learning machine with sparse cost matrix for imbalanced learning
    Li, Hui
    Yang, Xi
    Li, Yang
    Hao, Li-Ying
    Zhang, Tian-Lun
    ISA TRANSACTIONS, 2020, 100 : 198 - 209
  • [42] Distributed and Weighted Extreme Learning Machine for Imbalanced Big Data Learning
    Wang, Zhiqiong
    Xin, Junchang
    Yang, Hongxu
    Tian, Shuo
    Yu, Ge
    Xu, Chenren
    Yao, Yudong
    TSINGHUA SCIENCE AND TECHNOLOGY, 2017, 22 (02) : 160 - 173
  • [43] An Improved Extreme Learning Machine for Imbalanced Data Classification
    Zhang, Xiaopeng
    Qin, Liangxi
    IEEE ACCESS, 2022, 10 : 8634 - 8642
  • [44] A transfer weighted extreme learning machine for imbalanced classification
    Guo, Yinan
    Jiao, Botao
    Tan, Ying
    Zhang, Pei
    Tang, Fengzhen
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (10) : 7685 - 7705
  • [45] Kernelized Online Imbalanced Learning with Fixed Budgets
    Hu, Junjie
    Yang, Haiqin
    King, Irwin
    Lyu, Michael R.
    So, Anthony Man-Cho
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2666 - 2672
  • [46] Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification
    Surantha, Nico
    Gozali, Isabella D.
    ELECTRONICS, 2023, 12 (16)
  • [47] CLASS-SPECIFIC CHANNEL ATTENTION FOR FEW SHOT LEARNING
    Hsieh, Yi-Kuan
    Hsieh, Jun-Wei
    Chen, Ying-Yu
    2024 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2024, : 1012 - 1018
  • [48] Multiclass covert speech classification using extreme learning machine
    Dipti Pawar
    Sudhir Dhage
    Biomedical Engineering Letters, 2020, 10 : 217 - 226
  • [49] Orthogonal incremental extreme learning machine for regression and multiclass classification
    Li Ying
    Neural Computing and Applications, 2016, 27 : 111 - 120
  • [50] Multiclass covert speech classification using extreme learning machine
    Pawar, Dipti
    Dhage, Sudhir
    BIOMEDICAL ENGINEERING LETTERS, 2020, 10 (02) : 217 - 226