Generalized class-specific kernelized extreme learning machine for multiclass imbalanced learning

被引:24
|
作者
Raghuwanshi, Bhagat Singh [1 ]
Shukla, Sanyam [1 ]
机构
[1] Maulana Azad Natl Inst Technol MANIT, Dept Comp Sci & Engn, Bhopal 462003, Madhya Pradesh, India
关键词
Kernelized extreme learning machine; Generalized class-specific kernelized; extreme learning machine; Multiclass imbalanced learning; Classification; ROC CURVE; CLASSIFICATION; FRAUD; AREA;
D O I
10.1016/j.eswa.2018.12.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Class imbalanced learning is a well-known issue, which exists in real-world applications. Datasets that have skewed class distribution raise hindrance to the traditional learning algorithms. Traditional classifiers give the same importance to all the samples, which leads to the prediction biased towards the majority classes. To solve this intrinsic deficiency, numerous strategies have been proposed such as weighted extreme learning machine (WELM), weighted support vector machine (WSVM), class-specific extreme learning machine (CS-ELM) and class-specific kernelized extreme learning machine (CSKELM). This work focuses on multiclass imbalance problems, which are more difficult compared to the binary class imbalance problems. Kernelized extreme learning machine (KELM) yields better results compared to the traditional extreme learning machine (ELM), which uses random input parameters. This work presents a generalized CSKELM (GCSKELM), the extension of our recently proposed CSKELM, which addresses the multiclass imbalanced problems more effectively. The proposed GCSKELM can be applied directly to solve the multiclass imbalanced problems. GCSKELM with Gaussian kernel function avoids the non-optimal hidden node problem associated with CS-ELM and other existing variants of ELM. The proposed work also has less computational cost in contrast with kernelized WELM (KWELM) for multiclass imbalanced learning. This work employs class-specific regularization parameters, which are determined by employing class proportion. The extensive experimental analysis shows that the proposed work obtains promising generalization performance in contrast with the other state-of-the-art imbalanced learning methods. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 255
页数:12
相关论文
共 50 条
  • [1] Classifying multiclass imbalanced data using generalized class-specific extreme learning machine
    Bhagat Singh Raghuwanshi
    Sanyam Shukla
    Progress in Artificial Intelligence, 2021, 10 : 259 - 281
  • [2] Classifying multiclass imbalanced data using generalized class-specific extreme learning machine
    Raghuwanshi, Bhagat Singh
    Shukla, Sanyam
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2021, 10 (03) : 259 - 281
  • [3] Class-specific kernelized extreme learning machine for binary class imbalance learning
    Raghuwanshi, Bhagat Singh
    Shukla, Sanyam
    APPLIED SOFT COMPUTING, 2018, 73 : 1026 - 1038
  • [4] SMOTE based class-specific extreme learning machine for imbalanced learning
    Raghuwanshi, Bhagat Singh
    Shukla, Sanyam
    KNOWLEDGE-BASED SYSTEMS, 2020, 187
  • [5] Online sequential class-specific extreme learning machine for binary imbalanced learning
    Shukla, Sanyam
    Raghuwanshi, Bhagat Singh
    NEURAL NETWORKS, 2019, 119 : 235 - 248
  • [6] Minimum class variance class-specific extreme learning machine for imbalanced classification
    Raghuwanshi, Bhagat Singh
    Shukla, Sanyam
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 178
  • [7] Class-specific cost regulation extreme learning machine for imbalanced classification
    Xiao, Wendong
    Zhang, Jie
    Li, Yanjiao
    Zhang, Sen
    Yang, Weidong
    NEUROCOMPUTING, 2017, 261 : 70 - 82
  • [8] Active learning with extreme learning machine for online imbalanced multiclass classification
    Qin, Jiongming
    Wang, Cong
    Zou, Qinhong
    Sun, Yubin
    Chen, Bin
    KNOWLEDGE-BASED SYSTEMS, 2021, 231
  • [9] Class-specific extreme learning machine for handling binary class imbalance problem
    Raghuwanshi, Bhagat Singh
    Shukla, Sanyam
    NEURAL NETWORKS, 2018, 105 : 206 - 217
  • [10] Universum based kernelized weighted extreme learning machine for imbalanced datasets
    Bhagat Singh Raghuwanshi
    Akansha Mangal
    Sanyam Shukla
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3387 - 3408