How to Transfer? Zero-Shot Object Recognition via Hierarchical Transfer of Semantic Attributes

被引:38
|
作者
Al-Halah, Ziad [1 ]
Stiefelhagen, Rainer [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anthropomat & Robot, D-76021 Karlsruhe, Germany
关键词
D O I
10.1109/WACV.2015.116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Attribute based knowledge transfer has proven very successful in visual object analysis and learning previously unseen classes. However, the common approach learns and transfers attributes without taking into consideration the embedded structure between the categories in the source set. Such information provides important cues on the intra-attribute variations. We propose to capture these variations in a hierarchical model that expands the knowledge source with additional abstraction levels of attributes. We also provide a novel transfer approach that can choose the appropriate attributes to be shared with an unseen class. We evaluate our approach on three public datasets: aPascal, Animals with Attributes and CUB-200-2011 Birds. The experiments demonstrate the effectiveness of our model with significant improvement over state-of-the-art.
引用
收藏
页码:837 / 843
页数:7
相关论文
共 50 条
  • [1] Deep Representation of Hierarchical Semantic Attributes for Zero-shot Learning
    Zhang, Zhaocheng
    Yang, Gang
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [2] Zero-Shot Object Recognition by Semantic Manifold Distance
    Fu, Zhenyong
    Xiang, Tao
    Kodirov, Elyor
    Gong, Shaogang
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2635 - 2644
  • [3] Learning Latent Semantic Attributes for Zero-Shot Object Detection
    Wang, Kang
    Zhang, Lu
    Tan, Yifan
    Zhao, Jiajia
    Zhou, Shuigeng
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 230 - 237
  • [4] Beyond Semantic Attributes: Discrete Latent Attributes Learning for Zero-Shot Recognition
    Qin, Jie
    Wang, Yunhong
    Liu, Li
    Chen, Jiaxin
    Shao, Ling
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (11) : 1667 - 1671
  • [5] Zero-Shot Object Recognition Using Semantic Label Vectors
    Naha, Shujon
    Wang, Yang
    2015 12TH CONFERENCE ON COMPUTER AND ROBOT VISION CRV 2015, 2015, : 94 - 100
  • [6] Hierarchical-Dynamic Embedding for Zero-shot Object Recognition
    Han, Xuebo
    Li, Kan
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 520 - 525
  • [7] Learning Unbiased Zero-Shot Semantic Segmentation Networks Via Transductive Transfer
    Lv, Fengmao
    Liu, Haiyang
    Wang, Yichen
    Zhao, Jiayi
    Yang, Guowu
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1640 - 1644
  • [8] Zero-Shot Recognition with Unreliable Attributes
    Jayaraman, Dinesh
    Grauman, Kristen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [9] Semantic-aware visual attributes learning for zero-shot recognition
    Xie, Yurui
    Song, Tiecheng
    Li, Wei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 74 (74)
  • [10] Semantic-aware visual attributes learning for zero-shot recognition
    Xie, Yurui
    Song, Tiecheng
    Li, Wei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 74