Zero-Shot Object Recognition by Semantic Manifold Distance

被引:0
|
作者
Fu, Zhenyong [1 ]
Xiang, Tao [1 ]
Kodirov, Elyor [1 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, London E1 4NS, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object recognition by zero-shot learning (ZSL) aims to recognise objects without seeing any visual examples by learning knowledge transfer between seen and unseen object classes. This is typically achieved by exploring a semantic embedding space such as attribute space or semantic word vector space. In such a space, both seen and unseen class labels, as well as image features can be embedded (projected), and the similarity between them can thus be measured directly. Existing works differ in what embedding space is used and how to project the visual data into the semantic embedding space. Yet, they all measure the similarity in the space using a conventional distance metric (e.g. cosine) that does not consider the rich intrinsic structure, i.e. semantic manifold, of the semantic categories in the embedding space. In this paper we propose to model the semantic manifold in an embedding space using a semantic class label graph. The semantic manifold structure is used to redefine the distance metric in the semantic embedding,space for more effective ZSL. The proposed semantic manifold distance is computed using a novel absorbing Markov chain process (AMP), which has a very efficient closed-form solution. The proposed new model improves upon and seamlessly unifies various existing ZSL, algorithms. Extensive experiments on both the large scale ImageNet dataset and the widely used Animal with Attribute (AwA) dataset show that our model outperforms significantly the state-of-the-arts.
引用
收藏
页码:2635 / 2644
页数:10
相关论文
共 50 条
  • [1] Zero-Shot Object Recognition Using Semantic Label Vectors
    Naha, Shujon
    Wang, Yang
    2015 12TH CONFERENCE ON COMPUTER AND ROBOT VISION CRV 2015, 2015, : 94 - 100
  • [2] Manifold embedding for zero-shot recognition
    Ji, Zhong
    Yu, Xuejie
    Yu, Yunlong
    He, Yuqing
    COGNITIVE SYSTEMS RESEARCH, 2019, 55 : 34 - 43
  • [3] Kernelized distance learning for zero-shot recognition
    Zarei, Mohammad Reza
    Taheri, Mohammad
    Long, Yang
    INFORMATION SCIENCES, 2021, 580 : 801 - 818
  • [4] How to Transfer? Zero-Shot Object Recognition via Hierarchical Transfer of Semantic Attributes
    Al-Halah, Ziad
    Stiefelhagen, Rainer
    2015 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2015, : 837 - 843
  • [5] Global Semantic Descriptors for Zero-Shot Action Recognition
    Estevam, Valter
    Laroca, Rayson
    Pedrini, Helio
    Menotti, David
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1843 - 1847
  • [6] SEMANTIC EMBEDDING SPACE FOR ZERO-SHOT ACTION RECOGNITION
    Xu, Xun
    Hospedales, Timothy
    Gong, Shaogang
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 63 - 67
  • [7] Learning complementary semantic information for zero-shot recognition
    Hu, Xiaoming
    Wang, Zilei
    Li, Junjie
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 115
  • [8] GENERATING MANIFOLD-ALIGNED SEMANTIC FEATURE FOR ZERO-SHOT LEARNING
    Wang, Jidong
    Li, Yanan
    Pang, Zhangyang
    Wang, Donghui
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1613 - 1617
  • [9] SEMANTIC MANIFOLD ALIGNMENT IN VISUAL FEATURE SPACE FOR ZERO-SHOT LEARNING
    Liao, Changsu
    Su, Li
    Zhang, Wegang
    Huang, Qingming
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [10] Zero-shot object detection with contrastive semantic association network
    Haohe Li
    Chong Wang
    Weijie Liu
    Yilin Gong
    Xinmiao Dai
    Applied Intelligence, 2023, 53 : 30056 - 30068