Improving Map Re-localization with Deep 'Movable' Objects Segmentation on 3D LiDAR Point Clouds

被引:0
|
作者
Vaquero, Victor [1 ]
Fischer, Kai [2 ]
Moreno-Noguer, Francesc [1 ]
Sanfeliu, Alberto [1 ]
Milz, Stefan [2 ]
机构
[1] UPC, CSIC, Inst Robot & Informat Ind, Llorens i Artigas 4-6, Barcelona 08028, Spain
[2] Valeo Schalter & Sensoren GmbH, Hummendorfer Str 74, D-96317 Kronach, Germany
关键词
D O I
暂无
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Localization and Mapping is an essential component to enable Autonomous Vehicles navigation, and requires an accuracy exceeding that of commercial GPS-based systems. Current odometry and mapping algorithms are able to provide this accurate information. However, the lack of robustness of these algorithms against dynamic obstacles and environmental changes, even for short time periods, forces the generation of new maps on every session without taking advantage of previously obtained ones. In this paper we propose the use of a deep learning architecture to segment movable objects from 3D LiDAR point clouds in order to obtain longer-lasting 3D maps. This will in turn allow for better, faster and more accurate re-localization and trajectoy estimation on subsequent days. We show the effectiveness of our approach in a very dynamic and cluttered scenario, a supermarket parking lot. For that, we record several sequences on different days and compare localization errors with and without our movable objects segmentation method. Results show that we are able to accurately re-locate over a filtered map, consistently reducing trajectory errors between an average of 35:1% with respect to a non-filtered map version and of 47:9% with respect to a standalone map created on the current session.
引用
收藏
页码:942 / 949
页数:8
相关论文
共 50 条
  • [21] EXTENSION OF RCC TOPOLOGICAL RELATIONS FOR 3D COMPLEX OBJECTS COMPONENTS EXTRACTED FROM 3D LIDAR POINT CLOUDS
    Xing, Xu-Feng
    Mostafavi, Mir Abolfazl
    Wang, Chen
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 425 - 432
  • [22] SoftGroup for 3D Instance Segmentation on Point Clouds
    Thang Vu
    Kim, Kookhoi
    Luu, Tung M.
    Thanh Nguyen
    Yoo, Chang D.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2698 - 2707
  • [23] Interactive Object Segmentation in 3D Point Clouds
    Kontogianni, Theodora
    Celikkan, Ekin
    Tang, Siyu
    Schindler, Konrad
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2891 - 2897
  • [24] SEGCloud: Semantic Segmentation of 3D Point Clouds
    Tchapmi, Lyne P.
    Choy, Christopher B.
    Armeni, Iro
    Gwak, JunYoung
    Savarese, Silvio
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 537 - 547
  • [25] A Survey on Deep Learning Based Segmentation, Detection and Classification for 3D Point Clouds
    Vinodkumar, Prasoon Kumar
    Karabulut, Dogus
    Avots, Egils
    Ozcinar, Cagri
    Anbarjafari, Gholamreza
    ENTROPY, 2023, 25 (04)
  • [26] Biomass Prediction with 3D Point Clouds from LiDAR
    Pan, Liyuan
    Liu, Liu
    Condon, Anthony G.
    Estavillo, Gonzalo M.
    Coe, Robert A.
    Bull, Geoff
    Stone, Eric A.
    Petersson, Lars
    Rolland, Vivien
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1716 - 1726
  • [27] UNSUPERVISED STREAM LEARNING FOR 3D LIDAR POINT CLOUDS
    Shreelakshmi, C. R.
    Durbha, Surya S.
    Shinde, Rajat C.
    Talreja, Pratyush V.
    Singh, Gaganpreet
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4451 - 4454
  • [28] Class-Balanced PolarMix for Data Augmentation of 3D LIDAR Point Clouds Semantic Segmentation
    Liu, Bo
    Qi, Xiao
    JOURNAL OF INTERNET TECHNOLOGY, 2025, 26 (01): : 65 - 75
  • [29] Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR Point Clouds
    Alnaggar, Yara Ali
    Afifi, Mohamed
    Amer, Karim
    ElHelw, Mohamed
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1799 - 1808
  • [30] Semantic segmentation of 3D indoor LiDAR point clouds through feature pyramid architecture search
    Lin, Haojia
    Wu, Shangbin
    Chen, Yiping
    Li, Wen
    Luo, Zhipeng
    Guo, Yulan
    Wang, Cheng
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 177 (177) : 279 - 290