Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: A ternary nanocomposite for bone tissue engineering

被引:27
|
作者
Zia, Iram [1 ]
Mirza, Sumbul [1 ]
Jolly, Reshma [1 ]
Rehman, Abdur [2 ]
Ullah, Rizwan [2 ]
Shakir, Mohammad [1 ]
机构
[1] Aligarh Muslim Univ, Dept Chem, Inorgan Chem Lab, Aligarh 202002, Uttar Pradesh, India
[2] Aligarh Muslim Univ, Dept Zool, Aligarh 202002, Uttar Pradesh, India
关键词
Trigonella foenum graecum seed polysaccharide; Nano-hydroxyapatite; Bone tissue engineering; COMPOSITE SCAFFOLDS; IN-VITRO; MECHANICAL-PROPERTIES; FABRICATION; FENUGREEK; BIOMATERIALS; ANTIOXIDANT; TAMARIND; VIVO;
D O I
10.1016/j.ijbiomac.2018.11.059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biomimetic nanocomposites containing hydroxyapatite and natural polymers are promising candidates for bone grafting. In this work, a tricomponent bioactive nanocomposite (nHA-CH-TFSP) assembling nano-hydroxyapatite (nHA), Chitosan (CH) and Trigonella foenum graecum seed polysaccharide (TFSP) was developed using co-precipitation method and investigated against bicomponent nHA-CH nanocomposite for bone tissue engineering. In contrast to nHA-CH nanocomposite, nHA-CH-TFSP nanocomposite exhibited rough and interconnected porous structure as revealed by SEM with the porosity (603 +/- 0.17) lying in the range of cancellous bone. The incorporation of TFSP in nHA-CH substantially enhanced the in vitro water absorption capacity and protein adsorption ability along with appropriate biodegradation rate. Additionally, the nHA-CH-TFSP nanocomposite exhibited superior antibacterial activity. The nHA-CH-TFSP evinced a compressive strength of 6.7 +/- 0.24 MPa and a compressive modulus of 100 +/- 1.4 MPa, which fulfill the strength requisite of cancellous bone and could provide strong support for the growth of osteoblasts cells. Furthermore, the in vitro bioactivity study demonstrated its excellent biomineralization capacity in comparison to nHA-CH. The synthesized nHA-CH-TFSP nanocomposite exhibited better cytocompatibility towards the MG-63 cells along with its haemocompatible nature. Taken together the results of the present study indicate that nHA-CH-TFSP could serve as a prospective analogue for bone tissue engineering. (C) 2018 Elsevier B.V. All rights reserved,
引用
收藏
页码:88 / 101
页数:14
相关论文
共 50 条
  • [41] Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering
    Jiang Liuyun
    Li Yubao
    Xiong Chengdong
    Journal of Biomedical Science, 16
  • [42] Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering
    Jiang Liuyun
    Li Yubao
    Xiong Chengdong
    JOURNAL OF BIOMEDICAL SCIENCE, 2009, 16
  • [43] Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering
    Sharma, Chhavi
    Dinda, Amit Kumar
    Potdar, Pravin D.
    Chou, Chia-Fu
    Mishra, Narayan Chandra
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 64 : 416 - 427
  • [44] Bioactive Nano-Hydroxyapatite Doped Electrospun PVA-Chitosan Composite Nanofibers for Bone Tissue Engineering Applications
    Satpathy, Aishwarya
    Pal, Aniruddha
    Sengupta, Somoshree
    Das, Ankita
    Hasan, Md. Mahfujul
    Ratha, Itishree
    Barui, Ananya
    Bodhak, Subhadip
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (03) : 289 - 302
  • [45] Novel selenium and/or copper substituted hydroxyapatite-gelatin-chitosan-eggshell membrane nanocomposite scaffolds for bone tissue engineering applications
    Korowash, Sara Ibrahim
    Sharifulden, Nik S. A. Nik
    Ibrahim, Doreya Mohamed
    Chau, David Y. S.
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2023, 21
  • [46] Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties
    Cai, Xuan
    Tong, Hua
    Shen, Xinyu
    Chen, Weixuan
    Yan, Juan
    Hu, Jiming
    ACTA BIOMATERIALIA, 2009, 5 (07) : 2693 - 2703
  • [47] Development of a Sodium Alginate/Chitosan Nanocomposite Scaffold Incorporating Zircon Nanoparticles-Hydroxyapatite, and Alendronic Acid for Bone Tissue Engineering
    Asefnejad, Azadeh
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2024, 43 (03): : 1327 - 1344
  • [48] Enzymatically crosslinked carboxymethyl-chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application
    Mishra, Debasish
    Bhunia, Bibhas
    Banerjee, Indranil
    Datta, Pallab
    Dhara, Santanu
    Maiti, Tapas K.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (07): : 1295 - 1304
  • [49] Synthesis, characterization and in vitro screening of a nano-hydroxyapatite/chitosan/Euryale ferox nanoensemble - an inimitable approach for bone tissue engineering
    Shakir, Mohammad
    Mirza, Sumbul
    Jolly, Reshma
    Rauf, Ahmar
    Owais, Mohammad
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (01) : 363 - 371
  • [50] Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering
    Saravanan, Sekaran
    Nethala, Sricharan
    Pattnaik, Soumitri
    Tripathi, Anjali
    Moorthi, Ambigapathi
    Selvamurugan, Nagarajan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2011, 49 (02) : 188 - 193