Unsupervised Cross-Domain White Blood Cells Classification Using DANN

被引:0
|
作者
Zhang, Lixin [1 ]
Fu, Yining [1 ]
Yang, Yuhao [1 ]
Ding, Yongzheng [1 ]
Yu, Xuyao [2 ]
Li, Huanming [3 ]
Yu, Hui [1 ]
Chen, Chong [4 ]
机构
[1] Tianjin Univ, Tianjin Key Lab Biomed Detecting Techn & Instrume, Tianjin, Peoples R China
[2] Tianjin Med Univ Canc Inst & Hosp, Tianjin, Peoples R China
[3] Tianjin 4 Ctr Hosp, Tianjin Joint Lab Intelligent Med, Tianjin, Peoples R China
[4] Tianjin Univ, Inst Med Engn & Translat Med, Tianjin, Peoples R China
关键词
White blood cells classification; Deep learning; Domain adaptation; Generative adversarial network;
D O I
10.1145/3574198.3574201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The classification of white blood cells (WBCs) from microscopic blood image provides invaluable information for diagnosis of various diseases. Deep Convolutional Neural Networks are often used to classify WBCs automatically and have obtained certain achievements. However, when the training (source) dataset and test (target) dataset fall from different data distributions (i.e. domain shift), deep convolution neural networks adapt poorly. To solve the problem, we proposed a DANN-based method aiming to help our classifier learn domain-invariant information by using adversarial training. Two datasets were tested and our method achieved 97.1% accuracy, 97.2% recall, 97.2% precision and 97.4%f1-score, respectively. Domain adaptation verification shows that the proposed method has higher performance than other adaptive methods, and has broad application prospects in WBC classification.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 50 条
  • [21] Unsupervised Domain Adaptation with Imbalanced Cross-Domain Data
    Hsu, Tzu-Ming Harry
    Chen, Wei-Yu
    Hou, Cheng-An
    Tsai, Yao-Hung Hubert
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4121 - 4129
  • [22] Cross-Domain Contrastive Learning for Unsupervised Domain Adaptation
    Wang, Rui
    Wu, Zuxuan
    Weng, Zejia
    Chen, Jingjing
    Qi, Guo-Jun
    Jiang, Yu-Gang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1665 - 1673
  • [23] A comparative study of pivot selection strategies for unsupervised cross-domain sentiment classification
    Cui, Xia
    Al-Bazzaz, Noor
    Bollegala, Danushka
    Coenen, Frans
    KNOWLEDGE ENGINEERING REVIEW, 2018, 33
  • [24] UNSUPERVISED STYLE TRANSFER VIA DUALGAN FOR CROSS-DOMAIN AERIAL IMAGE CLASSIFICATION
    Li, Yansheng
    Shi, Te
    Chen, Wei
    Zhang, Yongjun
    Wang, Zhibin
    Li, Hao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1385 - 1388
  • [25] Unsupervised Cross-domain Image Classification by Distance Metric Guided Feature Alignment
    Meng, Qingjie
    Rueckert, Daniel
    Kainz, Bernhard
    MEDICAL ULTRASOUND, AND PRETERM, PERINATAL AND PAEDIATRIC IMAGE ANALYSIS, ASMUS 2020, PIPPI 2020, 2020, 12437 : 146 - 157
  • [26] Generalized Zero-Shot Domain Adaptation for Unsupervised Cross-Domain PolSAR Image Classification
    Gui, Rong
    Xu, Xin
    Yang, Rui
    Deng, Kailiang
    Hu, Jun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 270 - 283
  • [27] A cross-domain fruit classification method based on lightweight attention networks and unsupervised domain adaptation
    Jin Wang
    Cheng Zhang
    Ting Yan
    Jingru Yang
    Xiaohui Lu
    Guodong Lu
    Bincheng Huang
    Complex & Intelligent Systems, 2023, 9 : 4227 - 4247
  • [28] A cross-domain fruit classification method based on lightweight attention networks and unsupervised domain adaptation
    Wang, Jin
    Zhang, Cheng
    Yan, Ting
    Yang, Jingru
    Lu, Xiaohui
    Lu, Guodong
    Huang, Bincheng
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (04) : 4227 - 4247
  • [29] Unsupervised Cross-Domain Word Representation Learning
    Bollegala, Danushka
    Maehara, Takanori
    Kawarabayashi, Ken-Ichi
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, 2015, : 730 - 740
  • [30] Unsupervised Cross-Domain Singing Voice Conversion
    Polyak, Adam
    Wolf, Lior
    Adi, Yossi
    Taigman, Yaniv
    INTERSPEECH 2020, 2020, : 801 - 805