Improving Potts MRF model parameter estimation using higher-order neighborhood systems on stochastic image modeling

被引:1
|
作者
Levada, Alexandre L. M. [1 ]
Mascarenhas, Nelson D. A. [2 ]
Tannus, Alberto [1 ]
机构
[1] Univ Sao Paulo, Phys Inst Sao Carlos, Trabalhador Saocarlense Ave 400,Postal Code 369, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Markov random fields; Potts model; maximum pseudo-likelihood; stochastic image modeling;
D O I
10.1109/IWSSIP.2008.4604447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel pseudo-likelihood equation for the estimation of the Potts MRF model parameter on third-order neighborhood systems, allowing the modeling of less restrictive contextual systems in a large number of MRF applications in a computationally feasible way. The evaluation is done by a hypothesis testing approach using our approximation for the maximum pseudo-likelihood (MPL) estimator asymptotic variance. The test statistics together with the p-values, provide a complete framework for quantitative analysis in MRF parameter estimation on stochastic image modeling.
引用
收藏
页码:385 / +
页数:2
相关论文
共 50 条