Improving Potts MRF model parameter estimation using higher-order neighborhood systems on stochastic image modeling

被引:1
|
作者
Levada, Alexandre L. M. [1 ]
Mascarenhas, Nelson D. A. [2 ]
Tannus, Alberto [1 ]
机构
[1] Univ Sao Paulo, Phys Inst Sao Carlos, Trabalhador Saocarlense Ave 400,Postal Code 369, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Markov random fields; Potts model; maximum pseudo-likelihood; stochastic image modeling;
D O I
10.1109/IWSSIP.2008.4604447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel pseudo-likelihood equation for the estimation of the Potts MRF model parameter on third-order neighborhood systems, allowing the modeling of less restrictive contextual systems in a large number of MRF applications in a computationally feasible way. The evaluation is done by a hypothesis testing approach using our approximation for the maximum pseudo-likelihood (MPL) estimator asymptotic variance. The test statistics together with the p-values, provide a complete framework for quantitative analysis in MRF parameter estimation on stochastic image modeling.
引用
收藏
页码:385 / +
页数:2
相关论文
共 50 条
  • [1] Pseudolikelihood equations for Potts MRF model parameter estimation on higher order neighborhood systems
    Levada, Alexandre L. M.
    Mascarenhas, Nelson D. A.
    Tannus, Alberto
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (03) : 522 - 526
  • [2] Improving Potts MRF model parameter estimation in image analysis
    Levada, Alexandre L. M.
    Mascarenhas, Nelson D. A.
    Tannus, Alberto
    CSE 2008:11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, PROCEEDINGS, 2008, : 211 - +
  • [3] Pseudo-likelihood equations for Potts model on higher-order neighborhood systems: A quantitative approach for parameter estimation in image analysis
    Levada, Alexandre L. M.
    Mascarenhas, Nelson D. A.
    Tannus, Alberto
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2009, 23 (02) : 120 - 140
  • [4] Spatially Non-Homogeneous Potts Model Parameter Estimation on Higher-Order Neighborhood Systems by Maximum Pseudo-Likelihood
    Levada, Alexandre L. M.
    Mascarenhas, Nelson D. A.
    Tannus, Alberto
    Salvadeo, Denis H. P.
    APPLIED COMPUTING 2008, VOLS 1-3, 2008, : 1733 - +
  • [5] Nonrigid Image Registration Using Dynamic Higher-Order MRF Model
    Kwon, Dongjin
    Lee, Kyong Joon
    Yun, Il Dong
    Lee, Sang Uk
    COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 : 373 - +
  • [6] Numerical differentiation and parameter estimation in higher-order linear stochastic systems
    Duncan, TE
    Mandl, P
    PasikDuncan, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (04) : 522 - 532
  • [7] Numerical differentiation and parameter estimation in higher-order linear stochastic systems
    Univ of Kansas, Lawrence, United States
    IEEE Trans Autom Control, 4 (522-532):
  • [8] IDENTIFICATION OF HIGHER-ORDER STOCHASTIC DISTRIBUTED PARAMETER-SYSTEMS
    KUBRUSLY, CS
    RAIRO-AUTOMATIQUE-SYSTEMS ANALYSIS AND CONTROL, 1978, 12 (02): : 131 - 153
  • [9] A NOVEL PSEUDO-LIKELIHOOD EQUATION FOR POTTS MRF MODEL PARAMETER ESTIMATION IN IMAGE ANALYSIS
    Levada, Alexandre L. M.
    Mascarenhas, Nelson D. A.
    Tannus, Alberto
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1828 - 1831
  • [10] On using higher-order moments for stochastic inventory systems
    Tang, Ou
    Grubbstrom, Robert W.
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2006, 104 (02) : 454 - 461