REGULARITY OF MORREY COMMUTATORS

被引:35
|
作者
Adams, David R. [1 ]
Xiao, Jie [2 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Morrey-Sobolev spaces; commutators; traces; weights; Choquet integrals; fractional Laplacians; Riesz integrals; maximal operators; SPACES; POTENTIALS; INEQUALITY; OPERATORS; EQUATIONS;
D O I
10.1090/S0002-9947-2012-05595-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to presenting a new proof of boundedness of the commutator bI(alpha) - I(alpha)b (in which I-alpha and b are regarded as the Riesz and multiplication operators) acting on the Morrey space L-p,L-lambda under b is an element of BMO, and naturally, developing a regularity theory of commutators for Morrey-Sobolev spaces I-alpha(L-p,L-lambda) via a completely original iteration of I-alpha. Even in the special case of I-alpha(L-p), this is a new theory.
引用
收藏
页码:4801 / 4818
页数:18
相关论文
共 50 条
  • [11] Weighted Hardy operators and commutators on Morrey spaces
    Fu, Zunwei
    Lu, Shanzhen
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (03) : 531 - 539
  • [12] Nonlinear commutators on Morrey-Banach spaces
    Ho, Kwok-Pun
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (03)
  • [13] COMPACTNESS FOR COMMUTATORS OF MARCINKIEWICZ INTEGRALS IN MORREY SPACES
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (02): : 633 - 658
  • [14] Singular Integrals and Commutators in Generalized Morrey Spaces
    Lubomiea Softova
    Acta Mathematica Sinica, 2006, 22 : 757 - 766
  • [15] Weighted Hardy operators and commutators on Morrey spaces
    Zunwei Fu
    Shanzhen Lu
    Frontiers of Mathematics in China, 2010, 5 : 531 - 539
  • [16] Singular Integrals and Commutators in Generalized Morrey Spaces
    Lubomiea SOFTOVA
    Acta Mathematica Sinica(English Series), 2006, 22 (03) : 757 - 766
  • [17] Compactness of Commutators of Riesz Potential on Morrey Spaces
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    POTENTIAL ANALYSIS, 2009, 30 (04) : 301 - 313
  • [18] COMMUTATORS OF SUBLINEAR OPERATORS IN GRAND MORREY SPACES
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Rafeiro, Humberto
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (02) : 211 - 232
  • [19] COMMUTATORS OF FRACTIONAL INTEGRALS ON MARTINGALE MORREY SPACES
    Naka, Eiichi
    Sadasue, Gaku
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 631 - 655
  • [20] Commutators of Hardy operators in vanishing Morrey spaces
    Persson, Lars-Erik
    Ragusa, Maria Alessandra
    Samko, Natasha
    Wall, Peter
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 859 - 866