A Property of Quasi-diagonal Forms

被引:0
|
作者
Schinzel, A. [1 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
D O I
10.1307/mmj/1331222849
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [11] Quasi-Diagonal Behaviour and Smooth Weyl Sums
    Trevor D. Wooley
    Monatshefte für Mathematik, 2000, 130 : 161 - 170
  • [12] Quasi-diagonal behaviour and smooth Weyl sums
    Wooley, TD
    MONATSHEFTE FUR MATHEMATIK, 2000, 130 (02): : 161 - 170
  • [13] Spectral refinement for clustered eigenvalues of quasi-diagonal matrices
    Ahues, M
    d'Almeida, FD
    Largillier, A
    Vasconcelos, PB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (2-3) : 394 - 402
  • [14] A NOTE ON QUASI-DIAGONAL C-STAR-ALGEBRAS AND HOMOTOPY
    VOICULESCU, D
    DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) : 267 - 271
  • [15] Optimization of quasi-diagonal matrix-vector multiplication on GPU
    Yang, Wangdong
    Li, Kenli
    Liu, Yan
    Shi, Lin
    Wan, Lanjun
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2014, 28 (02): : 183 - 195
  • [16] Quasi-diagonal inhomogeneous closure for classical and quantum statistical dynamics
    Frederiksen, Jorgen S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
  • [17] Experimental realization of micromachined terahertz multistepped quasi-diagonal horn antenna
    Zhao, Pengfei
    Liu, Yong
    Lv, Xin
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2017, 59 (10) : 2644 - 2648
  • [18] Optimal Quasi-diagonal Preconditioners for Pseudodifferential Operators of Order Minus Two
    Thomas Führer
    Norbert Heuer
    Journal of Scientific Computing, 2019, 79 : 1161 - 1181
  • [19] Optimal Quasi-diagonal Preconditioners for Pseudodifferential Operators of Order Minus Two
    Fuhrer, Thomas
    Heuer, Norbert
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (02) : 1161 - 1181
  • [20] ON QUASI-DIAGONAL ISOMORPHISMS OF INFINITE AND FINITE TYPE DRAGILEV KOTHE SPACES
    Sozen, Yasar
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (05): : 295 - 314