An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2 nanofluids

被引:72
|
作者
Abdolbaqi, M. Kh. [1 ]
Sidik, Nor Azwadi Che [2 ]
Aziz, Amir [1 ]
Mamat, Rizalman [1 ,3 ]
Azmi, W. H. [1 ,3 ]
Yazid, Mohammad Noor Afiq Witri Muhammad [2 ]
Najafi, G. [4 ]
机构
[1] Univ Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, Malaysia
[2] Univ Teknol Malaysia, Fac Mech Engn, Skudai 81310, Johor, Malaysia
[3] Univ Malaysia Pahang, Automot Engn Ctr, Pekan 26600, Pahang, Malaysia
[4] Tarbiat Modares Univ, Tehran, Iran
关键词
Nanofluids; BioGlycol; Titanium oxide; Thermal conductivity; Viscosity; CONVECTIVE HEAT-TRANSFER; WATER-BASED TIO2; ETHYLENE-GLYCOL; ELECTRICAL-CONDUCTIVITY; TRANSFER PERFORMANCE; TRANSFER ENHANCEMENT; PHYSICAL PROPERTIES; BROWNIAN-MOTION; FRICTION FACTOR; TURBULENT-FLOW;
D O I
10.1016/j.icheatmasstransfer.2016.07.007
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanofluid as a new brand of cooling fluid consisting of nanometer-sized particles dispersed in base fluid. In this study, nanofluids have been prepared by dispersing TiO2 nanoparticles in different base fluids such as 20:80% and 30:70% by volume of BioGlycol (BG)/water (W) mixtures. Thermal conductivity and viscosity experiments have been conducted in temperatures between 30 degrees C and 80 degrees C and in volume concentrations between 0.5% and 2.0%. Results show that thermal conductivity of nanofluids increases with increase of volume concentrations and temperatures. Similarly, viscosity of nanofluid increases with increase of volume concentrations but decreases with increase of temperatures. The maximum thermal conductivity enhancement among all the nanofluids was observed for 20:80% BG:W nanofluid about 12.6% in the volume concentration of 2.0% at a temperature of 80 degrees C. Correspondingly among all the nanofluids maximum viscosity enhancement was observed for 30:70% BG:W nanofluid about 1.53-times in the volume concentration of 2.0% at a temperature of 70 degrees C. The classical models and semi-empirical correlations failed to predict the thermal conductivity and viscosity of nanofluids with effect of volume concentration and temperatures. Therefore, a nonlinear correlation has been proposed with 5% maximum deviation for the estimation of thermal conductivity and viscosity of nanofluids. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 32
页数:11
相关论文
共 50 条
  • [31] An Experimental Investigation on Thermal Conductivity and Viscosity of Graphene Doped CNTs/TiO2 Nanofluid
    Akhtar, A. M. Zetty
    Rahman, M. M.
    Kadirgama, K.
    Maleque, M. A.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2020, 17 (03) : 8224 - 8233
  • [32] Box-Behnken experimental design for investigation of stability and thermal conductivity of TiO2 nanofluids
    LotfizadehDehkordi, Babak
    Ghadimi, Azadeh
    Metselaar, Henk S. C.
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (01)
  • [33] Al2O3/TiO2 hybrid nanofluids thermal conductivity: An experimental approach
    Moldoveanu, Georgiana Madalina
    Minea, Alina Adriana
    Huminic, Gabriela
    Huminic, Angel
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 137 (02) : 583 - 592
  • [34] Dielectric and Thermal Conductivity Studies on Synthetic Ester Oil Based TiO2 Nanofluids
    Prasath, R. T. Arun Ram
    Mahoto, Sankar Narayan
    Roy, Nirmal Kumar
    Thomas, P.
    2017 3RD INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS (CATCON), 2017, : 289 - 292
  • [35] Stability and thermal conductivity of TiO2/water nanofluids: A comparison of the effects of surfactants and surface modification
    Zhang, Hao
    Qing, Shan
    Xu, Jiarui
    Zhang, Xiaohui
    Zhang, Aimin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 641
  • [36] Experimental investigation on thermal conductivity and viscosity of maghemite (γ-Fe2O3) water-based nanofluids
    Nurdin, I.
    Johan, M. R.
    Ang, B. C.
    3RD INTERNATIONAL CONFERENCE ON CHEMICAL ENGINEERING SCIENCES AND APPLICATIONS 2017 (3RD ICCHESA 2017), 2018, 334
  • [37] Measurement and Prediction of Thermal Conductivity of Nanofluids Containing TiO2 Nanoparticles
    Verma, Kamalesh
    Agarwal, Ravi
    Duchaniya, R. K.
    Singh, Ramvir
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (02) : 1068 - 1075
  • [38] Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids
    Hamid, K. Abdul
    Azmi, W. H.
    Nabil, M. F.
    Mamat, Rizalman
    Sharma, K. V.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 116 : 1143 - 1152
  • [39] Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids
    Li, Haoran
    Wang, Li
    He, Yurong
    Hu, Yanwei
    Zhu, Jiaqi
    Jiang, Baocheng
    APPLIED THERMAL ENGINEERING, 2015, 88 : 363 - 368
  • [40] Experimental Investigation On The Thermal Conductivity And Viscosity Of Engine Coolant Based Alumina Nanofluids
    Kole, Madhusree
    Dey, T. K.
    5TH INTERNATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES, 2010, 1249 : 120 - 124