A 220-261 GHz Frequency Multiplier Chain (x18) With 8-dBm Peak Output Power in 130-nm SiGe

被引:10
|
作者
Turkmen, Esref [1 ,2 ]
Aksoyak, Ibrahim Kagan [2 ]
Debski, Wojciech [1 ]
Winkler, Wolfgang [1 ]
Cagri Ulusoy, Ahmet [2 ]
机构
[1] Silicon Radar GmbH, D-15236 Frankfurt, Oder, Germany
[2] Karlsruhe Inst Technol, Inst Radio Frequency Engn & Elect, D-76128 Karlsruhe, Germany
关键词
Harmonic analysis; Power generation; Silicon germanium; BiCMOS integrated circuits; Band-pass filters; Power system harmonics; Power measurement; BiCMOS; frequency doubler; frequency tripler; multiplier chain; SiGe;
D O I
10.1109/LMWC.2022.3154352
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a 220-261-GHz frequency multiplier-by-18 chain in a 130-nm SiGe BiCMOS technology. It consists of three amplifiers (12-15, 110-135, and 216-270 GHz), two frequency triplers (36-45 and 108-135 GHz), a third-order Chebyshev bandpass filter (36-45 GHz), and a modified Gilbert-cell-based frequency doubler (216-270 GHz). The peak output power is about 8 dBm at 240 GHz with a 3-dB bandwidth of 41 GHz for an input power of -7 dBm. The unwanted harmonics are suppressed more than 25 dBc over the frequency range of interest. It consumes a dc current of 114.7 mA from a supply voltage of 3.3 V in the quiescent operation and drains a current of 130 mA for an input power of -7 dBm, which results in a drain efficiency of 1.47%. The total circuit occupies an area of 0.58 mm(2) (1.35 mm x 0.43 mm).
引用
收藏
页码:895 / 898
页数:4
相关论文
共 35 条
  • [1] A 143.2-168.8-GHz signal source with 5.6 dBm peak output power in a 130-nm SiGe BiCMOS process
    Zhou, Peigen
    Chen, Jixin
    Yan, Pinpin
    Peng, Zhigang
    Hou, Debin
    Chen, Zhe
    Hong, Wei
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (12)
  • [2] A 143.2–168.8-GHz signal source with 5.6 dBm peak output power in a 130-nm SiGe BiCMOS process
    Peigen ZHOU
    Jixin CHEN
    Pinpin YAN
    Zhigang PENG
    Debin HOU
    Zhe CHEN
    Wei HONG
    Science China(Information Sciences), 2020, 63 (12) : 275 - 277
  • [3] A 273.5-312-GHz Signal Source With 2.3 dBm Peak Output Power in a 130-nm SiGe BiCMOS Process
    Zhou, Peigen
    Chen, Jixin
    Yan, Pinpin
    Chen, Zhe
    Hou, Debin
    Hong, Wei
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2020, 10 (03) : 260 - 270
  • [4] A Broadband 110-170 GHz Frequency Multiplier by 4 Chain with 8 dBm Output Power in 130 nm BiCMOS
    Karakuzulu, Alper
    Eissa, Mohamed Hussein
    Kissinger, Dietmar
    Malignaggi, Andrea
    ESSCIRC 2021 - IEEE 47TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2021, : 451 - 454
  • [5] A 143.2–168.8-GHz signal source with 5.6 dBm peak output power in a 130-nm SiGe BiCMOS process
    Peigen Zhou
    Jixin Chen
    Pinpin Yan
    Zhigang Peng
    Debin Hou
    Zhe Chen
    Wei Hong
    Science China Information Sciences, 2020, 63
  • [6] A 77 GHz Power Amplifier with 19.1 dBm Peak Output Power in 130 nm SiGe Process
    Zhou, Peigen
    Yan, Pinpin
    Chen, Jixin
    Chen, Zhe
    Hong, Wei
    MICROMACHINES, 2023, 14 (12)
  • [7] A 150-GHz Transmitter With 12-dBm Peak Output Power Using 130-nm SiGe:C BiCMOS Process
    Zhou, Peigen
    Chen, Jixin
    Yan, Pinpin
    Yu, Jiayang
    Li, Huanbo
    Hou, Debin
    Gao, Hao
    Hong, Wei
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (07) : 3056 - 3067
  • [8] 220-360-GHz Broadband Frequency Multiplier Chains (x8) in 130-nm BiCMOS Technology
    Ali, Abdul
    Yun, Jongwon
    Kucharski, Maciej
    Ng, Herman Jalli
    Kissinger, Dietmar
    Colantonio, Paolo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (07) : 2701 - 2715
  • [9] A 280-325 GHz Frequency Multiplier Chain With 2.5 dBm Peak Output Power
    Zhou, Peigen
    Chen, Jixin
    Yan, Pinpin
    Chen, Zhe
    Hou, Debin
    Hong, Wei
    2019 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2019,
  • [10] A 200-GHz Inductively Tuned VCO With-7-dBm Output Power in 130-nm SiGe BiCMOS
    Chiang, Pei-Yuan
    Momeni, Omeed
    Heydari, Payam
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (10) : 3666 - 3673