Probabilistic framework for subject-specific and population-based analysis of longitudinal changes and disease progression in brain MR images

被引:0
|
作者
Ribbens, A. [1 ]
Hermans, J. [1 ]
Maes, F. [1 ]
Vandermeulen, D. [1 ]
Suetens, P. [1 ]
机构
[1] Univ Ziekenhuis Gasthuisberg, KU Leuven, Fac Engn ESAT PSI, Med Imaging Res Ctr, B-3000 Louvain, Belgium
来源
关键词
Population analysis; longitudinal change; spatiotemporal registration; 4D atlases; brain MR image segmentation; REGISTRATION; SEGMENTATION; INFORMATION; TEMPLATE; MODEL;
D O I
10.1117/12.877543
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aging and many neurological diseases cause progressive changes in brain morphology. Both subject-specific detection and measurement of these changes, as well as their population-based analysis are of great interest in many clinical studies. Generally, both problems are handled separately. However, as population-based knowledge facilitates subject-specific analysis and vice versa, we propose a unified statistical framework for subject-specific and population-based analysis of longitudinal brain MR image sequences of subjects suffering from the same neurological disease. The proposed method uses a maximum a posteriori formulation and the expectation maximization algorithm to simultaneously and iteratively segment all images in separate tissue classes, construct a global probabilistic 3D brain atlas and non-rigidly deform the atlas to each of the images to guide their segmentation. In order to enable a population-based analysis of the disease progression, an intermediate 4D probabilistic brain atlas is introduced, representing a discrete set of disease progression stages. The 4D atlas is simultaneously constructed with the 3D brain atlas by incorporating assignments of each input image (voxelwise) to a particular disease progression stage in the statistical framework. Moreover, these assignments enable both temporal and spatial subject-specific disease progression analysis. This includes detecting delayed or advanced disease progression and indicating the affected regions. The method is validated on a publicly available data set on which it shows promising results.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effects of proactive population-based nephrologist oversight on progression of chronic kidney disease: a retrospective control analysis
    Lee, Brian
    Turley, Marianne
    Meng, Di
    Zhou, Yvonne
    Garrido, Terhilda
    Lau, Alan
    Radler, Linda
    BMC HEALTH SERVICES RESEARCH, 2012, 12
  • [32] OUTCOMES OF WHOLE BRAIN RADIATION THERAPY FOR METASTATIC DISEASE: A RETROSPECTIVE POPULATION-BASED COHORT ANALYSIS
    Cameron, M.
    Kersten, C.
    van Helvoirt, R.
    NEURO-ONCOLOGY, 2008, 10 (06) : 1116 - 1116
  • [33] A longitudinal observational population-based study of brain volume associated with changes in sleep timing from middle to late-life
    Kim, Regina E. Y.
    Kim, Hyeon Jin
    Kim, Soriul
    Abbott, Robert D.
    Thomas, Robert J.
    Yun, Chang-Ho
    Lee, Hyang Woon
    Shin, Chol
    SLEEP, 2021, 44 (04)
  • [34] Type 2 Diabetes Mellitus in Patients with Sickle Cell Disease: A Population-Based Longitudinal Analysis of Three Cohorts
    Zhou, Jifang
    Han, Jin
    Nutescu, Edith A.
    Galanter, William
    Walton, Surrey M.
    Gordeuk, Victor R.
    Saraf, Santosh L.
    Srisuwananukorn, Andrew
    Calip, Gregory Sampang
    BLOOD, 2018, 132
  • [35] Patterns of progression of cerebral small vessel disease markers in older adults of Amerindian ancestry: a population-based, longitudinal prospective cohort study
    Oscar H. Del Brutto
    Robertino M. Mera
    Aldo F. Costa
    Denisse A. Rumbea
    Bettsy Y. Recalde
    Victor J. Del Brutto
    Aging Clinical and Experimental Research, 2022, 34 : 2751 - 2759
  • [36] Clinical characteristics and disease-specific prognostic nomogram for primary gliosarcoma: a SEER population-based analysis
    Song-Shan Feng
    Huang-bao Li
    Fan Fan
    Jing Li
    Hui Cao
    Zhi-Wei Xia
    Kui Yang
    Xiao-San Zhu
    Ting-Ting Cheng
    Quan Cheng
    Scientific Reports, 9
  • [37] Clinical characteristics and disease-specific prognostic nomogram for primary gliosarcoma: a SEER population-based analysis
    Feng, Song-Shan
    Li, Huang-bao
    Fan, Fan
    Li, Jing
    Cao, Hui
    Xia, Zhi-Wei
    Yang, Kui
    Zhu, Xiao-San
    Cheng, Ting-Ting
    Cheng, Quan
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [38] Patterns of progression of cerebral small vessel disease markers in older adults of Amerindian ancestry: a population-based, longitudinal prospective cohort study
    Del Brutto, Oscar H.
    Mera, Robertino M.
    Costa, Aldo F.
    Rumbea, Denisse A.
    Recalde, Bettsy Y.
    Del Brutto, Victor J.
    AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2022, 34 (11) : 2751 - 2759
  • [39] Ranking age-specific modifiable risk factors for cardiovascular disease and mortality: evidence from a population-based longitudinal study
    Tian, Fei
    Chen, Lan
    Qian, Zhengmin
    Xia, Hui
    Zhang, Zilong
    Zhang, Jingyi
    Wang, Chongjian
    Vaughn, Michael G.
    Tabet, Maya
    Lin, Hualiang
    ECLINICALMEDICINE, 2023, 64
  • [40] Changes in Smoking Status and Mortality From All Causes and Lung Cancer: A Longitudinal Analysis of a Population-based Study in Japan
    Zha, Ling
    Sobue, Tomotaka
    Kitamura, Tetsuhisa
    Kitamura, Yuri
    Sawada, Node
    Iwasaki, Motoki
    Sasazuki, Shizuka
    Yamaji, Taiki
    Shimazu, Taichi
    Tsugane, Shoichiro
    Tsugane, S.
    Sawada, N.
    Iwasaki, M.
    Sasazuki, S.
    Yamaji, T.
    Shimazu, T.
    Goto, A.
    Hidaka, A.
    Hanaoka, T.
    Ogata, J.
    Baba, S.
    Mannami, T.
    Okayama, A.
    Kokubo, Y.
    Miyakawa, K.
    Saito, F.
    Koizumi, A.
    Sano, Y.
    Hashimoto, I
    Ikuta, T.
    Tanaba, Y.
    Sato, H.
    Roppongi, Y.
    Takashima, T.
    Suzuki, H.
    Miyajima, Y.
    Suzuki, N.
    Nagasawa, S.
    Furusugi, Y.
    Nagai, N.
    Ito, Y.
    Komatsu, S.
    Minamizono, T.
    Sanada, H.
    Hatayama, Y.
    Kobayashi, F.
    Uchino, H.
    Shirai, Y.
    Kondo, T.
    Sasaki, R.
    JOURNAL OF EPIDEMIOLOGY, 2019, 29 (01) : 11 - 17