Machine Learning Based Predictive Modeling of Machining Induced Microhardness and Grain Size in Ti-6Al-4V Alloy

被引:43
|
作者
Arisoy, Yigit M. [1 ]
Ozel, Tugrul [1 ]
机构
[1] Rutgers State Univ, Dept Ind & Syst Engn, Mfg & Automat Res Lab, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Grain size; Titanium; Machining; Microhardness; Machine learning; SURFACE INTEGRITY; GENETIC ALGORITHMS; RESIDUAL-STRESSES; TITANIUM; MICROSTRUCTURE; OPTIMIZATION; EVOLUTION;
D O I
10.1080/10426914.2014.961476
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Titanium and its alloys are today used in many industries including aerospace, automotive, and medical device and among those Ti-6Al-4V alloy is the most suitable because of favorable properties such as high strength-to-weight ratio, toughness, superb corrosion resistance, and bio-compatibility. Machining induced surface integrity and microstructure alterations size play a critical role in product fatigue life and reliability. Cutting tool geometry, coating type, and cutting conditions can affect surface and subsurface hardness as well as grain size. In this paper, predictions of machining induced microhardness and grain size are performed by using 3D finite element (FE) simulations of machining and machine learning models. Microhardness and microstructure of machined surfaces of Ti-6Al-4V are investigated. Hardness measurements are conducted at elevated temperatures to develop a predictive model by utilizing FE-based temperature fields for hardness profile. Measured hardness, grain size, and fractions are utilized in developing predictive models. Predicted microhardness profiles and grain sizes are then utilized in understanding the effect of machining parameters such as cutting speed, tool coating, and edge radius on the surface integrity. Optimization using genetic algorithms is performed to identify most favorable tool edge radius and cutting conditions.
引用
收藏
页码:425 / 433
页数:9
相关论文
共 50 条
  • [31] On thermoplastic shear instability in the machining of a titanium alloy (Ti-6Al-4V)
    Ranga Komanduri
    Zhen-Bing Hou
    Metallurgical and Materials Transactions A, 2002, 33 : 2995 - 3010
  • [32] An Experimental and Numerical Study on Orthogonal Machining of Ti-6Al-4V Alloy
    Krishnaraj, Vijayan
    JOURNAL FOR MANUFACTURING SCIENCE AND PRODUCTION, 2016, 16 (04) : 209 - 213
  • [33] Energy conscious cryogenic machining of Ti-6Al-4V titanium alloy
    Shokrani, Alborz
    Dhokia, Vimal
    Newman, Stephen T.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2018, 232 (10) : 1690 - 1706
  • [34] Machining Ti-6Al-4V alloy with cryogenic compressed air cooling
    Sun, S.
    Brandt, M.
    Dargusch, M. S.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2010, 50 (11): : 933 - 942
  • [35] An enhanced constitutive material model for machining of Ti-6Al-4V alloy
    Liu, Rui
    Melkote, Shreyes
    Pucha, Raghuram
    Morehouse, John
    Man, Xiaolin
    Marusich, Troy
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2013, 213 (12) : 2238 - 2246
  • [36] THE EFFECT OF ANNEALING ON THE KNOOP MICROHARDNESS OF NITROGEN IMPLANTED TI-6AL-4V ALLOY
    NATH, VC
    SOOD, DK
    MANORY, RR
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1991, 59 : 946 - 950
  • [37] Experimental Study of Machining Characteristics of Titanium Alloy (Ti-6Al-4V)
    Sharma, Arunil
    Sharma, Mukund Dutt
    Sehgal, Rakesh
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2013, 38 (11) : 3201 - 3209
  • [38] Study on blasting erosion arc machining of Ti-6Al-4V alloy
    Chen, Jipeng
    Gu, Lin
    Xu, Hui
    Zhao, Wansheng
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 85 (9-12): : 2819 - 2829
  • [39] Ultrasonic Assisted Electrical Discharge Machining of Ti-6Al-4V Alloy
    Shabgard, M. R.
    Alenabi, H.
    MATERIALS AND MANUFACTURING PROCESSES, 2015, 30 (08) : 991 - 1000
  • [40] On thermoplastic shear instability in the machining of a titanium alloy (Ti-6Al-4V)
    Komanduri, R
    Hou, ZB
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (09): : 2995 - 3010