Shock generation comparison with planar and hemispherical targets in shock ignition relevant experiment

被引:8
|
作者
Baton, S. D. [1 ,2 ]
Le Bel, E. [3 ]
Brygoo, S. [4 ]
Ribeyre, X. [3 ]
Rousseaux, C. [4 ]
Breil, J. [3 ]
Koenig, M. [1 ,2 ]
Batani, D. [3 ]
Raffestin, D. [5 ]
机构
[1] Univ Paris Saclay, CEA, CNRS, Ecole Polytech,LULI, F-91128 Palaiseau, France
[2] UPMC Univ Paris 06, Sorbonne Univ, CNRS, LULI, Pl Jussieu, F-75252 Paris 05, France
[3] Univ Bordeaux, CNRS, CEA, Ctr Lasers Intenses & Applicat CELIA, F-33405 Talence, France
[4] CEA, DAM, DIF, F-91297 Arpajon, France
[5] CEA, DAM, CESTA, F-33114 Le Barp, France
关键词
INERTIAL CONFINEMENT FUSION; DRIVE;
D O I
10.1063/1.4989525
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We performed an experiment on the "Ligne d'Integration Laser" facility to produce strong shocks with plasma conditions relevant for the Shock Ignition approach to Inertial Confinement Fusion. Two kinds of targets have been used: planar and hemispherical. We observe an increase in the shock velocity in hemispherical geometry, which entails a fairly planar shock despite the Gaussian focal spot. Numerical results reproduce the shock dynamics in the two cases in a successful way, indicating, for laser intensities around 1.5 x 10(15) W/cm(2) at 3 omega, an ablation pressure of (90620) Mbar and (120+/-20) Mbar in planar and hemispherical geometry, respectively. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Shock ignition: a brief overview and progress in the design of robust targets
    Atzeni, S.
    Marocchino, A.
    Schiavi, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
  • [22] Shock focusing in a planar convergent geometry: experiment and simulation
    Bond, C.
    Hill, D. J.
    Meiron, D. I.
    Dimotakis, P. E.
    JOURNAL OF FLUID MECHANICS, 2009, 641 : 297 - 333
  • [23] Experimental observation of parametric instabilities at laser intensities relevant for shock ignition
    Cristoforetti, G.
    Colaitis, A.
    Antonelli, L.
    Atzeni, S.
    Baffigi, F.
    Batani, D.
    Barbato, F.
    Boutoux, G.
    Dudzak, R.
    Koester, P.
    Krousky, E.
    Labate, L.
    Nicolai, Ph.
    Renner, O.
    Skoric, M.
    Tikhonchuk, V.
    Gizzi, L. A.
    EPL, 2017, 117 (03)
  • [24] X-ray time-resolved diagnostics of hot electron generation in shock ignition relevant experiments
    Filippov, E. D.
    Martynenko, A. S.
    Cervenak, M.
    Antonelli, L.
    Baffigi, F.
    Cristoferetti, G.
    Gizzi, L. A.
    Pisarczyk, T.
    Mancelli, D.
    Ospina, V.
    Krus, M.
    Dudzak, R.
    Pikuz, S. A.
    Batani, D.
    Renner, O.
    INTERNATIONAL CONFERENCE LASER OPTICS 2020 (ICLO 2020), 2020,
  • [25] Planar radiative shock experiments and their comparison to simulations
    Reighard, A. B.
    Drake, R. P.
    Mucino, J. E.
    Knauer, J. P.
    Busquet, M.
    PHYSICS OF PLASMAS, 2007, 14 (05)
  • [26] Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition
    董云松
    杨家敏
    宋天明
    朱托
    黄成武
    Plasma Science and Technology, 2016, 18 (04) : 376 - 381
  • [27] Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition
    Dong Yunsong
    Yang Jiamin
    Song Tianming
    Zhu Tuo
    Huang Chengwu
    PLASMA SCIENCE & TECHNOLOGY, 2016, 18 (04) : 376 - 381
  • [28] Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition
    董云松
    杨家敏
    宋天明
    朱托
    黄成武
    Plasma Science and Technology, 2016, (04) : 376 - 381
  • [29] Cryogenic Targets of Shock Ignition: Modeling of Diffusive Filling with a Hydrogen Fuel
    I. V. Aleksandrova
    E. R. Koresheva
    Physics of Atomic Nuclei, 2022, 85 (Suppl 1) : S90 - S100
  • [30] Estimation of the FST-Layering Time for Shock Ignition ICF Targets
    Aleksandrova, Irina
    Koresheva, Elena
    SYMMETRY-BASEL, 2022, 14 (07):