First-order phase transitions: equivalence between bimodalities and the Yang-Lee theorem

被引:39
|
作者
Chomaz, P
Gulminelli, F
机构
[1] ISMRA Univ Caen, LPC Caen, Phys Corpusculaire Lab, CNRS,IN2P3, F-14050 Caen, France
[2] CEA, DSM, GANIL, CNRS,IN2P3, F-14076 Caen 5, France
[3] Univ Caen, LPC Caen, Phys Corpusculaire Lab, F-14050 Caen, France
关键词
phase transitions; finite systems; negative heat capacity;
D O I
10.1016/j.physa.2003.01.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
First-order phase transitions in finite systems can be defined through the bimodality of the distribution of the order parameter. This definition is equivalent to the one based on the inverted curvature of the thermodynamic potential. Moreover we show that it is in a one-to-one correspondence with the Yang-Lee theorem in the thermodynamic limit. Bimodality is a necessary and sufficient condition for zeroes of the partition sum in the control intensive variable complex plane to be distributed on a line perpendicular to the real axis with a uniform density, scaling like the number of particles. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:451 / 458
页数:8
相关论文
共 50 条
  • [31] FIRST-ORDER PHASE TRANSITIONS IN MULTISTRANDED MACROMOLECULES
    APPLEQUIST, J
    JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (02): : 609 - +
  • [32] On the multidimensional theory of the first-order phase transitions
    M. P. Fateev
    Physics of the Solid State, 2002, 44 : 2318 - 2322
  • [33] FIRST-ORDER MAGNETIC PHASE-TRANSITIONS
    BROWN, HA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (04): : 542 - 542
  • [34] Scale and electroweak first-order phase transitions
    Kubo, Jisuke
    Yamada, Masatoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (09):
  • [35] Cosmological constraints on first-order phase transitions
    Bai, Yang
    Korwar, Mrunal
    PHYSICAL REVIEW D, 2022, 105 (09)
  • [36] Correlation functions in first-order phase transitions
    Garrido, V
    Crespo, D
    PHYSICAL REVIEW E, 1997, 56 (03): : 2781 - 2792
  • [37] First-order phase transitions in porous media
    Bluhm, J
    POROMECHANICS: A TRIBUTE TO MAURICE A. BIOT, 1998, : 17 - 22
  • [38] Dynamic scaling for first-order phase transitions
    Özoguz, BE
    Gündüç, Y
    Aydin, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (03): : 553 - 559
  • [39] A Bayesian Interpretation of First-Order Phase Transitions
    Davis, Sergio
    Peralta, Joaquin
    Navarrete, Yasmin
    Gonzalez, Diego
    Gutierrez, Gonzalo
    FOUNDATIONS OF PHYSICS, 2016, 46 (03) : 350 - 359
  • [40] AUTOWAVES INDUCED BY FIRST-ORDER PHASE TRANSITIONS
    Bulavin, L. A.
    Zabashta, Yu. f.
    Lazarenko, M. M.
    Vergun, L. yu.
    Ogorodnik, K. O.
    Hnatiuk, K. I.
    UKRAINIAN JOURNAL OF PHYSICS, 2022, 67 (04): : 270 - 276