Food security prediction from heterogeneous data combining machine and deep learning methods

被引:28
|
作者
Deleglise, Hugo [1 ,3 ]
Interdonato, Roberto [1 ,3 ]
Begue, Agnes [1 ,3 ]
D'Hotel, Elodie Maitre [2 ,4 ]
Teisseire, Maguelonne [1 ,5 ]
Roche, Mathieu [1 ,3 ]
机构
[1] Univ Montpellier, TETIS, AgroParisTech, CIRAD,CNRS,INRAE, Montpellier, France
[2] Univ Montpellier, Inst Agro, MOISA, CIHEAM IAMM,INRAE,CIRAD, Montpellier, France
[3] CIRAD, UMR TETIS, F-34398 Montpellier, France
[4] CIRAD, UMR MOISA, F-34398 Montpellier, France
[5] INRAE, Montpellier, France
关键词
Food security; Machine learning; Deep learning; Heterogeneous data; SUPPORT VECTOR MACHINE;
D O I
10.1016/j.eswa.2021.116189
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
After many years of decline, hunger in Africa is growing again. This represents a global societal issue that all disciplines concerned with data analysis are facing. The rapid and accurate identification of food insecurity situations is a complex challenge. Although a number of food security alert and monitoring systems exist in food insecure countries, the data and methodologies they are based on do not allow for comprehending food security in all its complexity. In this study, we focus on two key food security indicators: the food consumption score (FCS) and the household dietary diversity score (HDDS). Based on the observation that producing such indicators is expensive in terms of time and resources, we propose the FSPHD (Food Security Prediction based on Heterogeneous Data) framework, based on state-of-the-art machine and deep learning models, to enable the estimation of FCS and HDDS starting from publicly available heterogeneous data. We take into account the indicators estimated using data from the Permanent Agricultural Survey conducted by the Burkina Faso government from 2009 to 2018 as reference data. We produce our estimations starting from heterogeneous data that include rasters (e.g., population density, land use, soil quality), GPS points (hospitals, schools, violent events), line vectors (waterways), quantitative variables (maize prices, World Bank variables, meteorological data) and time series (Smoothed Brightness Temperature - SMT, rainfall estimates, maize prices). The experimental results show a promising performance of our framework, which outperforms competing methods, thus paving the way for the development of advanced food security prediction systems based on state-of-the-art data science technologies.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Machine Learning and Deep Learning for Throughput Prediction
    Lee, Dongwon
    Lee, Joohyun
    12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2021), 2021, : 452 - 454
  • [42] Machine Learning and Deep Learning in Cyber Security for IoT
    Velliangiri, S.
    Kasaraneni, Kenanya Kumar
    Lecture Notes in Electrical Engineering, 2020, 601 : 975 - 981
  • [43] AI, Machine Learning and Deep Learning a Security Perspective
    Dharma, Fajar Pitarsi
    Singgih, Moses Laksono
    Bintang, Hamdan S.
    Hu, Fei
    Hei, Xiali
    TECHNOMETRICS, 2023, 65 (04) : 606 - 607
  • [44] Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application
    Avalos, Sebastian
    Kracht, Willy
    Ortiz, Julian M.
    MINING METALLURGY & EXPLORATION, 2020, 37 (04) : 1197 - 1212
  • [45] Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application
    Sebastian Avalos
    Willy Kracht
    Julian M. Ortiz
    Mining, Metallurgy & Exploration, 2020, 37 : 1197 - 1212
  • [46] A comparison of deep machine learning and Monte Carlo methods for facies classification from seismic data
    Grana, Dario
    Azevedo, Leonardo
    Liu, Mingliang
    GEOPHYSICS, 2020, 85 (04) : WA41 - WA52
  • [47] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Anna Cascarano
    Jordi Mur-Petit
    Jerónimo Hernández-González
    Marina Camacho
    Nina de Toro Eadie
    Polyxeni Gkontra
    Marc Chadeau-Hyam
    Jordi Vitrià
    Karim Lekadir
    Artificial Intelligence Review, 2023, 56 : 1711 - 1771
  • [48] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Cascarano, Anna
    Mur-Petit, Jordi
    Hernandez-Gonzalez, Jeronimo
    Camacho, Marina
    Eadie, Nina de Toro
    Gkontra, Polyxeni
    Chadeau-Hyam, Marc
    Vitria, Jordi
    Lekadir, Karim
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 2) : 1711 - 1771
  • [49] Marine Data Prediction: An Evaluation of Machine Learning, Deep Learning, and Statistical Predictive Models
    Ali, Ahmed
    Fathalla, Ahmed
    Salah, Ahmad
    Bekhit, Mahmoud
    Eldesouky, Esraa
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021 (2021)
  • [50] An evaluation of machine learning and deep learning models for drought prediction using weather data
    Jiang, Weiwei
    Luo, Jiayun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3611 - 3626