Blind Deconvolution Using Generalized Cross-Validation Approach to Regularization Parameter Estimation

被引:64
|
作者
Liao, Haiyong [1 ,2 ]
Ng, Michael K. [1 ,2 ]
机构
[1] Hong Kong Baptist Univ, Ctr Math Imaging & Vis, Kowloon Tong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
关键词
Alternating minimization; blind deconvolution; generalized cross validation (GCV); regularization parameters; total variation (TV); TOTAL VARIATION MINIMIZATION; BLUR IDENTIFICATION; IMAGE-RESTORATION; VARIATIONAL APPROACH; ALGORITHM;
D O I
10.1109/TIP.2010.2073474
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose and present an algorithm for total variation (TV)-based blind deconvolution. Both the unknown image and blur can be estimated within an alternating minimization framework. With the generalized cross-validation (GCV) method, the regularization parameters associated with the unknown image and blur can be updated in alternating minimization steps. Experimental results confirm that the performance of the proposed algorithm is better than variational Bayesian blind deconvolution algorithms with Student's-t priors or a total variation prior.
引用
收藏
页码:670 / 680
页数:11
相关论文
共 50 条
  • [41] BLIND DECONVOLUTION USING SHEARLET -TV REGULARIZATION
    Mousavi, Z.
    Mokhtari, R.
    Lakestani, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 525 - 534
  • [42] Regularization Path of Cross-Validation Error Lower Bounds
    Shibagaki, Atsushi
    Suzuki, Yoshiki
    Karasuyama, Masayuki
    Takeuchi, Ichiro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [43] Estimates for the generalized cross-validation function via an extrapolation and statistical approach
    Mitrouli, Marilena
    Roupa, Paraskevi
    CALCOLO, 2018, 55 (03)
  • [44] Experience with a cross-validation approach
    D. Gansser
    Chromatographia, 2002, 55 : S71 - S74
  • [45] Estimates for the generalized cross-validation function via an extrapolation and statistical approach
    Marilena Mitrouli
    Paraskevi Roupa
    Calcolo, 2018, 55
  • [46] Experience with a cross-validation approach
    Gansser, D
    CHROMATOGRAPHIA, 2002, 55 (Suppl 1) : S71 - S74
  • [47] Regularization of the image division-approach to blind deconvolution
    Barraza-Felix, S
    Frieden, BR
    BAYESIAN INFERENCE FOR INVERSE PROBLEMS, 1998, 3459 : 62 - 72
  • [48] A non-iterative regularization approach to blind deconvolution
    Justen, L
    Ramlau, R
    INVERSE PROBLEMS, 2006, 22 (03) : 771 - 800
  • [49] Estimation Stability With Cross-Validation (ESCV)
    Lim, Chinghway
    Yu, Bin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (02) : 464 - 492
  • [50] CROSS-VALIDATION IN DENSITY-ESTIMATION
    HALL, P
    BIOMETRIKA, 1982, 69 (02) : 383 - 390