A class large solution of the 3D Hall-magnetohydrodynamic equations

被引:15
|
作者
Li, Jinlu [1 ,3 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Anhui, Peoples R China
[3] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hall-MHD system; Global existence; Large initial data; GLOBAL EXISTENCE; MHD EQUATIONS; WELL-POSEDNESS; CRITERION; DECAY;
D O I
10.1016/j.jde.2019.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the global large solution to the three-dimensional incompressible Hall-MHD equations with a class of initial data. Here the "large solution" means that the L-infinity norm can be arbitrarily large initially. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:5811 / 5822
页数:12
相关论文
共 50 条
  • [31] Regularity and uniqueness for the 3D compressible magnetohydrodynamic equations
    Mingyu Zhang
    Boundary Value Problems, 2022
  • [32] Nonlinear Galerkin methods for 3D magnetohydrodynamic equations
    Schmidtmann, O
    Feudel, F
    Seehafer, N
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07): : 1497 - 1507
  • [33] ZERO VISCOSITY-RESISTIVITY LIMIT FOR THE 3D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN GEVREY CLASS
    Li, Fucai
    Zhang, Zhipeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) : 4279 - 4304
  • [34] Global strong solution for 3D compressible heat-conducting magnetohydrodynamic equations revisited
    Liu, Yang
    Zhong, Xin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 336 : 456 - 478
  • [35] A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations
    Alghamdi, A. M.
    Gala, S.
    Ragusa, M. A.
    AIMS MATHEMATICS, 2018, 3 (04): : 565 - 574
  • [36] Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations
    Kobelkov, Georgij M.
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (04) : 283 - 286
  • [37] A STABILITY PROBLEM FOR THE 3D MAGNETOHYDRODYNAMIC EQUATIONS NEAR EQUILIBRIUM
    Ke, Xueli
    Yuan, Baoquan
    Xiao, Yaomin
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (04) : 1107 - 1118
  • [38] Stability and optimal decay for the 3D anisotropic magnetohydrodynamic equations
    Yang, Wan-Rong
    Fang, Cao
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (03)
  • [39] The 3D incompressible magnetohydrodynamic equations with fractional partial dissipation
    Yang, Wanrong
    Jiu, Quansen
    Wu, Jiahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 630 - 652
  • [40] A Stability Problem for the 3D Magnetohydrodynamic Equations Near Equilibrium
    Xueli Ke
    Baoquan Yuan
    Yaomin Xiao
    Acta Mathematica Scientia, 2021, 41 : 1107 - 1118