Solutions of certain fractional kinetic equations and a fractional diffusion equation

被引:18
|
作者
Saxena, R. K. [1 ]
Mathai, A. M. [2 ,3 ]
Haubold, H. J. [3 ,4 ]
机构
[1] Jai Narain Vyas Univ, Dept Math & Stat, Jodhpur 342004, Rajasthan, India
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Ctr Math Sci, Pala 686574, Kerala, India
[4] UN, Off Outer Space Affairs, A-1400 Vienna, Austria
关键词
D O I
10.1063/1.3496829
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In view of the usefulness and importance of kinetic equations in certain physical problems, the authors derive an explicit solution of a fractional kinetic equation of general character that unifies and extends earlier results. Further, an alternative shorter method based on a result developed by the authors is given to derive the solution of a fractional diffusion equation. Solutions are represented in terms of H-functions and generalized Mittag-Leffler functions. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3496829]
引用
收藏
页数:8
相关论文
共 50 条
  • [41] SOLUTIONS OF CERTAIN CLASS OF NON-LINEAR TIME-FRACTIONAL DIFFUSION EQUATIONS VIA THE FRACTIONAL DIFFERENTIAL TRANSFORM METHOD
    Bozer, Mehmet
    Ozarslan, Mehmet Ali
    Demez, Hulya
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 673 - 686
  • [42] On fractional kinetic equations
    R.K. Saxena
    A.M. Mathai
    H.J. Haubold
    Astrophysics and Space Science, 2002, 282 : 281 - 287
  • [43] On fractional kinetic equations
    Saxena, RK
    Mathai, AM
    Haubold, HJ
    ASTROPHYSICS AND SPACE SCIENCE, 2002, 282 (01) : 281 - 287
  • [44] Fractional Kinetic Equations
    V. N. Kolokoltsov
    M. S. Troeva
    Mathematical Notes, 2022, 112 : 561 - 575
  • [45] Fractional Kinetic Equations
    Kolokoltsov, V. N.
    Troeva, M. S.
    MATHEMATICAL NOTES, 2022, 112 (3-4) : 561 - 575
  • [46] OPTIMUM SOLUTIONS OF SPACE FRACTIONAL ORDER DIFFUSION EQUATION
    Ali, Sajjad
    Shah, Kamal
    Li, Yongjin
    Arif, Muhammad
    THERMAL SCIENCE, 2018, 22 : S329 - S339
  • [48] REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
    McLean, William
    ANZIAM JOURNAL, 2010, 52 (02): : 123 - 138
  • [49] The fundamental solutions for the fractional diffusion-wave equation
    Mainardi, F
    APPLIED MATHEMATICS LETTERS, 1996, 9 (06) : 23 - 28
  • [50] RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Atkinson, Colin
    Osseiran, Adel
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 92 - 106