In this paper we give two results concerning the signless Laplacian spectra of simple graphs. Firstly, we give a combinatorial expression for the fourth coefficient of the (signless Laplacian) characteristic polynomial of a graph. Secondly, we consider limit points for the (signless Laplacian) eigenvalues and we prove that each non-negative real number is a limit point for (signless Laplacian) eigenvalue of graphs. (C) 2010 Elsevier Ltd. All rights reserved.
机构:
St Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, RussiaSt Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
Korotyaev, Evgeny
Saburova, Natalia
论文数: 0引用数: 0
h-index: 0
机构:
Northern Arctic Fed Univ, Severnaya Dvina Emb 17, Arkhangelsk 163002, RussiaSt Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
机构:
St Petersburg State Univ, Dept Math Anal, Univ Skaya Nab 7-9, St Petersburg 199034, RussiaSt Petersburg State Univ, Dept Math Anal, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
Korotyaev, Evgeny
Saburova, Natalia
论文数: 0引用数: 0
h-index: 0
机构:
Northern Arctic Fed Univ, Dept Math Anal Algebra & Geometry, Severnaya Dvina Emb 17, Arkhangelsk 163002, RussiaSt Petersburg State Univ, Dept Math Anal, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, GermanyHarvard Univ, Dept Math, Cambridge, MA 02138 USA
Bauer, Frank
Hua, Bobo
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, GermanyHarvard Univ, Dept Math, Cambridge, MA 02138 USA
Hua, Bobo
Keller, Matthias
论文数: 0引用数: 0
h-index: 0
机构:
Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, IsraelHarvard Univ, Dept Math, Cambridge, MA 02138 USA