Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture

被引:8
|
作者
Mitsopoulos, Konstantinos [1 ]
Somers, Sterling [1 ]
Schooler, Joel [2 ]
Lebiere, Christian [1 ]
Pirolli, Peter [2 ]
Thomson, Robert [1 ,3 ]
机构
[1] Carnegie Mellon Univ, Psychol Dept, Pittsburgh, PA USA
[2] Inst Human & Machine Cognit, Pensacola, FL USA
[3] US Mil Acad, Army Cyber Inst, West Point, NY 10996 USA
关键词
Explainable artificial intelligence; Cognitive modeling; Common ground; Salience; Instance-based learning; Deep reinforcement learning; BLACK-BOX; DECISIONS; MODELS; GO;
D O I
10.1111/tops.12573
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
We argue that cognitive models can provide a common ground between human users and deep reinforcement learning (Deep RL) algorithms for purposes of explainable artificial intelligence (AI). Casting both the human and learner as cognitive models provides common mechanisms to compare and understand their underlying decision-making processes. This common grounding allows us to identify divergences and explain the learner's behavior in human understandable terms. We present novel salience techniques that highlight the most relevant features in each model's decision-making, as well as examples of this technique in common training environments such as Starcraft II and an OpenAI gridworld.
引用
收藏
页码:756 / 779
页数:24
相关论文
共 50 条
  • [21] When Spectrum Sharing in Cognitive Networks Meets Deep Reinforcement Learning: Architecture, Fundamentals, and Challenges
    Si, Jiangbo
    Huang, Rui
    Li, Zan
    Hu, Hang
    Jin, Yuntao
    Cheng, Julian
    Al-Dhahir, Naofal
    IEEE NETWORK, 2024, 38 (01): : 187 - 195
  • [22] Deep reinforcement learning agents for dynamic spectrum access in television whitespace cognitive radio networks
    Ukpong, Udeme C.
    Idowu-Bismark, Olabode
    Adetiba, Emmanuel
    Kala, Jules R.
    Owolabi, Emmanuel
    Oshin, Oluwadamilola
    Abayomi, Abdultaofeek
    Dare, Oluwatobi E.
    SCIENTIFIC AFRICAN, 2025, 27
  • [23] Learning key steps to attack deep reinforcement learning agents
    Chien-Min Yu
    Ming-Hsin Chen
    Hsuan-Tien Lin
    Machine Learning, 2023, 112 : 1499 - 1522
  • [24] Learning key steps to attack deep reinforcement learning agents
    Yu, Chien-Min
    Chen, Ming-Hsin
    Lin, Hsuan-Tien
    MACHINE LEARNING, 2023, 112 (05) : 1499 - 1522
  • [25] Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning
    Das, Abhishek
    Kottur, Satwik
    Moura, Jose M. F.
    Lee, Stefan
    Batra, Dhruv
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2970 - 2979
  • [26] FLARE: Fingerprinting Deep Reinforcement Learning Agents using Universal Adversarial Masks
    Tekgul, Buse G. A.
    Asokan, N.
    39TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2023, 2023, : 492 - 505
  • [27] Collision Avoidance Among Dense Heterogeneous Agents Using Deep Reinforcement Learning
    Zhu, Kai
    Li, Bin
    Zhe, Wenming
    Zhang, Tao
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (01) : 57 - 64
  • [28] Online Surveillance of IoT Agents in Smart Cities Using Deep Reinforcement Learning
    Alenezi, Ahmad
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2024, 20 (01)
  • [29] Toward Obstacle Avoidance for Mobile Robots Using Deep Reinforcement Learning Algorithm
    Gao, Xiaoshan
    Yan, Liang
    Wang, Gang
    Wang, Tiantian
    Du, Nannan
    Gerada, Chris
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 2136 - 2139
  • [30] Learning Socially Appropriate Robot Approaching Behavior Toward Groups using Deep Reinforcement Learning
    Gao, Yuan
    Yang, Fangkai
    Frisk, Martin
    Hernandez, Daniel
    Peters, Christopher
    Castellano, Ginevra
    2019 28TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2019,