An integral representation and a Rodrigues-type difference formula for the continuous q-Hermite polynomials

被引:0
|
作者
Atakishiyev, NM [1 ]
Atakishiyeva, MK [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
关键词
classical special functions; the continuous q-Hermite polynomials of Rogers; integral representation; Rodrigues-type difference formula;
D O I
10.1117/12.434212
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We derive a simple integral representation and the corresponding Rodrigues-type difference formula for the continuous q-Hermite polynomials of Rogers. As a consequence, this also yields the appropriate formulae for the Rogers-Szego and Stieltjes-Wigert polynomials.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 50 条
  • [21] On the Discrete q-Hermite Matrix Polynomials
    Salem A.
    International Journal of Applied and Computational Mathematics, 2017, 3 (4) : 3147 - 3158
  • [22] d-orthogonality of discrete q-Hermite type polynomials
    Lamiri, Imed
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 116 - 133
  • [23] Bivariate continuous q-Hermite polynomials and deformed quantum Serre relations
    Casper, W. Riley
    Kolb, Stefan
    Yakimov, Milen
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (01)
  • [24] Fourier-Gauss transforms of the continuous big q-Hermite polynomials
    Atakishiyeva, MK
    Atakishiyev, NM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16): : L559 - L565
  • [25] Dual addition formulas: the case of continuous q-ultraspherical and q-Hermite polynomials
    Koornwinder, Tom H.
    RAMANUJAN JOURNAL, 2023, 61 (02): : 425 - 444
  • [26] Q-BETA INTEGRALS AND THE Q-HERMITE POLYNOMIALS
    ALSALAM, WA
    ISMAIL, MEH
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 135 (02) : 209 - 221
  • [27] Approach of the continuous q-Hermite polynomials to x-representation of q-oscillator algebra and its coherent states
    Fakhri, H.
    Gharalari, S. E. Mousavi
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (02)
  • [28] On 2-variable q-Hermite polynomials
    Raza, Nusrat
    Fadel, Mohammed
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    AIMS MATHEMATICS, 2021, 6 (08): : 8705 - 8727
  • [29] Dual addition formulas: the case of continuous q-ultraspherical and q-Hermite polynomials
    Tom H. Koornwinder
    The Ramanujan Journal, 2023, 61 : 425 - 444
  • [30] CERTAIN ADVANCEMENTS IN MULTIDIMENSIONAL q-HERMITE POLYNOMIALS
    Wani, Shahid ahmad
    Riyasat, Mumtaz
    Khan, Subuhi
    Ramirez, William
    REPORTS ON MATHEMATICAL PHYSICS, 2024, 94 (01) : 117 - 141