Simultaneous supersingular reductions of CM elliptic curves

被引:5
|
作者
Aka, Menny [1 ]
Luethi, Manuel [2 ]
Michel, Philippe [2 ]
Wieser, Andreas [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[3] Hebrew Univ Jerusalem, Einstein Inst Math, Edward J Safra Campus, Jerusalem, Israel
来源
关键词
SUBCONVEXITY PROBLEM; INTEGER POINTS; EQUIDISTRIBUTION; LIFTINGS; SPHERES; VALUES;
D O I
10.1515/crelle-2021-0086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the simultaneous reductions at several supersingular primes of elliptic curves with complex multiplication. We show - under additional congruence assumptions on the CM order - that the reductions are surjective (and even become equidistributed) on the product of supersingular loci when the discriminant of the order becomes large. This variant of the equidistribution theorems of Duke and Cornut-Vatsal is an(other) application of the recent work of Einsiedler and Lindenstrauss on the classification of joinings of higher-rank diagonalizable actions.
引用
收藏
页码:1 / 43
页数:43
相关论文
共 50 条
  • [21] An elementary proof for the number of supersingular elliptic curves
    Finotti, Luis R. A.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (02): : 531 - 538
  • [22] Pseudoprime Reductions of Elliptic Curves
    David, C.
    Wu, J.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (01): : 81 - 101
  • [23] Reductions of points on elliptic curves
    Akbary, Amir
    Ghioca, Dragos
    Murty, V. Kumar
    MATHEMATISCHE ANNALEN, 2010, 347 (02) : 365 - 394
  • [24] Pseudoprime reductions of elliptic curves
    Cojocaru, Alina Carmen
    Luca, Florian
    Shparunski, Igor E.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 : 513 - 522
  • [25] Reductions of points on elliptic curves
    Amir Akbary
    Dragos Ghioca
    V. Kumar Murty
    Mathematische Annalen, 2010, 347 : 365 - 394
  • [26] The anticyclotomic main conjecture for elliptic curves at supersingular primes
    Darmon, Henri
    Iovita, Adrian
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (02) : 291 - 325
  • [27] Conjecture A and μ-invariant for Selmer groups of supersingular elliptic curves
    Hamidi, Parham
    Ray, Jishnu
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2021, 33 (03): : 853 - 886
  • [28] Faster MapToPoint on Supersingular Elliptic Curves in Characteristic 3
    Kawahara, Yuto
    Kobayashi, Tetsutaro
    Takahashi, Gen
    Takagi, Tsuyoshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (01) : 150 - 155
  • [29] Finding orientations of supersingular elliptic curves and quaternion orders
    Arpin, Sarah
    Clements, James
    Dartois, Pierrick
    Eriksen, Jonathan Komada
    Kutas, Peter
    Wesolowski, Benjamin
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (11) : 3447 - 3493
  • [30] Normalizers of split Cartan subgroups and supersingular elliptic curves
    Merel, Loic
    DIOPHANTINE GEOMETRY, PROCEEDINGS, 2007, 4 : 237 - 255