An existence result of entropy solutions to elliptic problems in generalized Orlicz-Sobolev spaces

被引:5
|
作者
Bourahma, M. [1 ]
Benkirane, A. [1 ]
Bennouna, J. [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Math, Lab LAMA, PB 1796, Fez Atlas, Fez, Morocco
关键词
Elliptic problems; Musielak-Orlicz-Sobolev spaces; Entropy solutions; Generalized growth; RENORMALIZED SOLUTIONS; EQUATIONS;
D O I
10.1007/s12215-020-00506-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence results for entropy solutions to elliptic problem with nonstandard growth and merely integrable data, -divA(x,u, backward difference u)-div phi(x,u)=fin omega,the growth of leading part of the operator is governed by a Musielak function whose growth does not have to be doubling and the lower-order term phi satisfies a generalized natural growth condition without any supplementary restrictions.
引用
收藏
页码:481 / 504
页数:24
相关论文
共 50 条
  • [41] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces
    Ochoa, Pablo
    Silva, Analia
    Marziani, Maria Jose Suarez
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 21 - 47
  • [42] An existence theorem for weak solutions for a class of elliptic partial differential systems in general Orlicz-Sobolev spaces
    Dong, Ge
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (07) : 2049 - 2057
  • [43] Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Fei Fang
    Zhong Tan
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 287 - 296
  • [44] Existence of Three Solutions for Quasilinear Elliptic Equations: an Orlicz-Sobolev Space Setting
    Fei FANG
    Zhong TAN
    Acta Mathematicae Applicatae Sinica, 2017, 33 (02) : 287 - 296
  • [45] Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Fang, Fei
    Tan, Zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 287 - 296
  • [46] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [47] A STRONGLY NONLINEAR ELLIPTIC PROBLEM IN ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 455 - 462
  • [48] A class of elliptic inclusion in fractional Orlicz-Sobolev spaces
    El-houari, Hamza
    Moussa, Hicham
    Chadli, Lalla Saadia
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 755 - 772
  • [49] Nonhomogeneous multiparameter problems in Orlicz-Sobolev spaces
    Radulescu, Vicentiu D.
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2555 - 2574
  • [50] Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) : 401 - 406