Multimodal Continual Graph Learning with Neural Architecture Search

被引:18
|
作者
Cai, Jie [1 ]
Wang, Xin [1 ]
Guan, Chaoyu [1 ]
Tang, Yateng [2 ]
Xu, Jin [2 ]
Zhong, Bin [2 ]
Zhu, Wenwu [1 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Tencent Inc, Wechat, Data Qual Team, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
continual learning; multimodal graph; neural architecture search; NETWORKS;
D O I
10.1145/3485447.3512176
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Continual graph learning is rapidly emerging as an important role in a variety of real-world applications such as online product recommendation systems and social media. While achieving great success, existing works on continual graph learning ignore the information from multiple modalities (e.g., visual and textual features) as well as the rich dynamic structural information hidden in the ever-changing graph data and evolving tasks. However, considering multimodal continual graph learning with evolving topological structures poses great challenges: i) it is unclear how to incorporate the multimodal information into continual graph learning and ii) it is nontrivial to design models that can capture the structure-evolving dynamics in continual graph learning. To tackle these challenges, in this paper we propose a novel Multimodal Structure-evolving Continual Graph Learning (MSCGL) model, which continually learns both the model architecture and the corresponding parameters for Adaptive Multimodal Graph Neural Network (AdaMGNN). To be concrete, our proposed MSCGL model simultaneously takes social information and multimodal information into account to build the multimodal graphs. In order for continually adapting to new tasks without forgetting the old ones, our MSCGL model explores a new strategy with joint optimization of Neural Architecture Search (NAS) and Group Sparse Regularization (GSR) across different tasks. These two parts interact with each other reciprocally, where NAS is expected to explore more promising architectures and GSR is in charge of preserving important information from the previous tasks. We conduct extensive experiments over two real-world multimodal continual graph scenarios to demonstrate the superiority of the proposed MSCGL model. Empirical experiments indicate that both the architectures and weight sharing across different tasks play important roles in affecting the model performances.
引用
收藏
页码:1292 / 1300
页数:9
相关论文
共 50 条
  • [31] Auto-GNN: Neural architecture search of graph neural networks
    Zhou, Kaixiong
    Huang, Xiao
    Song, Qingquan
    Chen, Rui
    Hu, Xia
    FRONTIERS IN BIG DATA, 2022, 5
  • [32] A surrogate evolutionary neural architecture search algorithm for graph neural networks
    Liu, Yang
    Liu, Jing
    APPLIED SOFT COMPUTING, 2023, 144
  • [33] Relational structure predictive neural architecture search for multimodal fusion
    Xiao Yao
    Fang Li
    Yifeng Zeng
    Soft Computing, 2022, 26 : 2807 - 2818
  • [34] Relational structure predictive neural architecture search for multimodal fusion
    Yao, Xiao
    Li, Fang
    Zeng, Yifeng
    SOFT COMPUTING, 2022, 26 (06) : 2807 - 2818
  • [35] Learning from the Past: Continual Meta-Learning with Bayesian Graph Neural Networks
    Luo, Yadan
    Huang, Zi
    Zhang, Zheng
    Wang, Ziwei
    Baktashmotlagh, Mahsa
    Yang, Yang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5021 - 5028
  • [36] BM-NAS: Bilevel Multimodal Neural Architecture Search
    Yin, Yihang
    Huang, Siyu
    Zhang, Xiang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8901 - 8909
  • [37] Graph neural network architecture search for rotating machinery fault diagnosis based on reinforcement learning
    Li, Jialin
    Cao, Xuan
    Chen, Renxiang
    Zhang, Xia
    Huang, Xianzhen
    Qu, Yongzhi
    Mechanical Systems and Signal Processing, 2023, 202
  • [38] Graph neural network architecture search for rotating machinery fault diagnosis based on reinforcement learning
    Li, Jialin
    Cao, Xuan
    Chen, Renxiang
    Zhang, Xia
    Huang, Xianzhen
    Qu, Yongzhi
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 202
  • [39] One-shot Graph Neural Architecture Search with Dynamic Search Space
    Li, Yanxi
    Wen, Zean
    Wang, Yunhe
    Xu, Chang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8510 - 8517
  • [40] Deep Active Learning with a Neural Architecture Search
    Geifman, Yonatan
    El-Yaniv, Ran
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32