Some Liouville theorems for Henon type elliptic equations

被引:86
|
作者
Wang, Chao [2 ]
Ye, Dong [1 ]
机构
[1] Univ Metz, Dept Math, UMR 7122, F-57045 Metz, France
[2] Univ Cergy Pontoise, Dept Math, UMR 8088, F-95302 Cergy Pontoise, France
关键词
Liouville theorem; Henon equation; Stability; Finite Morse index solution; POSITIVE SOLUTIONS; DELTA-U; CLASSIFICATION; STABILITY; E(U);
D O I
10.1016/j.jfa.2011.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate here the nonlinear elliptic equations -Delta u = vertical bar x vertical bar(alpha)e(u) and -Delta u = vertical bar x vertical bar(alpha)vertical bar u vertical bar(p-1)u with alpha > -2, p > 1 and N >= 2. In particular, we prove some Liouville type theorems for weak solutions with finite Morse index in the low dimensional Euclidean spaces or half spaces. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1705 / 1727
页数:23
相关论文
共 50 条
  • [41] LIOUVILLE-TYPE THEOREMS FOR STABLE SOLUTIONS OF SINGULAR QUASILINEAR ELLIPTIC EQUATIONS IN RN
    Chen, Caisheng
    Song, Hongxue
    Yang, Hongwei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [42] Liouville-type theorems and decay estimates for solutions to higher order elliptic equations
    Lu, Guozhen
    Wang, Peiyong
    Zhu, Jiuyi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 653 - 665
  • [43] Liouville-type Theorems for Fully Nonlinear Elliptic Equations and Systems in Half Spaces
    Lu, Guozhen
    Zhu, Jiuyi
    ADVANCED NONLINEAR STUDIES, 2013, 13 (04) : 979 - 1001
  • [44] Liouville-type results for some quasilinear anisotropic elliptic equations
    Farina, Alberto
    Sciunzi, Berardino
    Vuono, Domenico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 238
  • [45] Liouville theorems and Harnack inequality for a class of semilinear elliptic equations
    Lu, Zhihao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 426 : 454 - 465
  • [46] Liouville theorems for nonlinear elliptic equations in half-spaces
    Jorge García-Melián
    Alexander Quaas
    Boyan Sirakov
    Journal d'Analyse Mathématique, 2019, 139 : 559 - 583
  • [47] Integral representations and Liouville theorems for solutions of periodic elliptic equations
    Kuchment, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 181 (02) : 402 - 446
  • [48] Liouville type theorems for poly-harmonic Dirichlet problems of Henon-Hardy type equations on a half space or a ball
    Dai, Wei
    COLLECTANEA MATHEMATICA, 2023, 74 (03) : 729 - 751
  • [49] LIOUVILLE-TYPE THEOREMS FOR SEMILINEAR ELLIPTIC SYSTEMS
    Zhang Zhengce
    Wang Weimin
    Li Kaitai
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (04): : 304 - 310
  • [50] LIOUVILLE THEOREMS FOR NON-LINEAR ELLIPTIC EQUATIONS AND SYSTEMS
    MEIER, M
    MANUSCRIPTA MATHEMATICA, 1979, 29 (2-4) : 207 - 228