Premixed Flame Propagation of Methane/Carbon Monoxide/Air in a Closed Tube with an Obstacle

被引:7
|
作者
Yu, Zhijin [1 ,2 ]
Chen, Shuangshuang [1 ]
Gu, Yu [1 ]
Wen, Hu [1 ]
Li, Ruikang [1 ]
Fan, Shixing [1 ,2 ]
机构
[1] Xian Univ Sci & Technol, Coll Safety Sci & Engn, Yatan Rd 58, Xian, Shaanxi, Peoples R China
[2] Xian Univ Sci & Technol, Min Engn Postdoctoral Res Stn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas explosion; carbon monoxide; obstacle; flame speed; heat loss; METHANE/AIR EXPLOSION CHARACTERISTICS; SIDE VENTING POSITION; LARGE-EDDY SIMULATION; END-VENTED DUCT; CARBON-MONOXIDE; INITIAL PRESSURE; AIR EXPLOSION; MIXTURE; DEFLAGRATION; TEMPERATURES;
D O I
10.1080/00102202.2020.1758077
中图分类号
O414.1 [热力学];
学科分类号
摘要
To investigate the actual gas explosion and propagation laws in the roadway of an underground mine, experiments were conducted in a standard 19-L tube of rectangular section to provide a comprehensive understanding of the effects of carbon monoxide (CO) addition and obstacles placed on the flame propagation of explosions from methane-air mixtures at different conditions. The flame structure, flame propagation speed, heat loss, and explosion pressure were used to reflect the explosion behaviors of the premixed flame. The experimental results indicate that the enhancement and attenuation of the explosion pressure wave are significantly influenced by an obstacle. The existence of obstacles changed the trend of classical pressure rise, thus forming a first pressure peak. In addition, the position close to the obstacle presented a higher explosion pressure. Under 7 vol.% and 9.5 vol.% CH4 conditions, the increase of CO (from 0 vol.% to 2 vol.%) promoted explosion flame propagation. However, the CO exhibited a clear negative effect on the rate of flame propagation due to exacerbated O-2 depletion of 11 vol.% CH4, and the negative effect enhances with CO increased. Besides, when the CO addition increased, the flame tended to more instability and more brightly. For heat loss, with the increase of CO content in mixed gases, there was a slight promoting, constant and inhibiting effect for 11 vol.%, 9.5 vol.%, and 7 vol.% CH4, respectively. These results are of fundamental importance for the prevention and mitigation of gas explosion in underground mines and other industrial scenarios.
引用
收藏
页码:2724 / 2740
页数:17
相关论文
共 50 条
  • [21] Experimental Observation of Premixed Methane/Air Flame Propagation in an Obstructed Tube With Increasing Blockage Ratios
    Chen, Peng
    Sun, Ruibang
    Li, Liyang
    Wang, Yi
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2023, 145 (02):
  • [22] Experimental and numerical studies of premixed methane-hydrogen/air mixtures flame propagation in closed duct
    Rao, Guoning
    Zhang, Yun
    Cao, Weiguo
    Zhao, Mengke
    Gao, Wei
    Liang, Hao
    Tan, Yinxing
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 96 (12): : 2684 - 2689
  • [23] An investigation of hydrogen/methane premixed flame propagation in a tube with copper foam
    Duan, Yulong
    Long, Fengying
    Wang, Shuo
    Mi, Hongfu
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,
  • [24] The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition
    Zhang, Chao
    Shen, Xiaobo
    Wen, Jennifer X.
    Xiu, Guangli
    FUEL, 2020, 265
  • [25] Suppression of instabilities in a premixed methane-air flame in a narrow channel via hydrogen/carbon monoxide addition
    Kang, X.
    Gollan, R. J.
    Jacobs, P. A.
    Veeraragavan, A.
    COMBUSTION AND FLAME, 2016, 173 : 266 - 275
  • [26] THE ACCELERATION OF FLAME PROPAGATION IN A TUBE BY AN OBSTACLE
    PHYLAKTOU, H
    ANDREWS, GE
    COMBUSTION AND FLAME, 1991, 85 (3-4) : 363 - 379
  • [27] A comparative study of the effect of cavity and obstacle on premixed methane-air flame evolution
    Wu, Deyao
    Ma, Tianbao
    Li, Jian
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 190 : 135 - 147
  • [28] An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct
    Yang, Xufeng
    Yu, Minggao
    Zheng, Kai
    Luan, Pengpeng
    Han, Shixin
    FUEL, 2020, 267
  • [29] Effect of Obstacle Gradient on the Deflagration Characteristics of Hydrogen/Air Premixed Flame in a Closed Chamber
    Wang, Yufei
    Zhong, Shengjun
    PROCESSES, 2024, 12 (05)
  • [30] An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct
    Yang, Xufeng
    Yu, Minggao
    Zheng, Kai
    Luan, Pengpeng
    Han, Shixin
    Fuel, 2020, 267