Four-Connected Triangulations of Planar Point Sets

被引:0
|
作者
Diwan, Ajit Arvind [1 ]
Ghosh, Subir Kumar [2 ]
Roy, Bodhayan [2 ]
机构
[1] Indian Inst Technol, Dept Comp Sci & Engn, Bombay 400076, Maharashtra, India
[2] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Bombay 400005, Maharashtra, India
关键词
Triangulation; 4-connected; Complex triangle; Convex hull; Matching; Good set; Annular region; Inward triangle; Forbidden triangle;
D O I
10.1007/s00454-015-9694-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider the problem of determining in polynomial time whether a given planar point set of points in general position admits a 4-connected triangulation. We propose a necessary and sufficient condition for recognizing such point sets , and present an time algorithm for constructing a 4-connected triangulation of , if it exists. Thus, our algorithm solves a longstanding open problem in computational geometry and geometric graph theory. We also provide a simple time method for constructing a non-complex triangulation of , if it exists. This method provides a new insight into the structure of 4-connected triangulations of point sets.
引用
收藏
页码:713 / 746
页数:34
相关论文
共 50 条
  • [41] On the union of simply connected planar sets
    Karimov, UH
    Repovs, D
    TOPOLOGY AND ITS APPLICATIONS, 2002, 122 (1-2) : 281 - 286
  • [42] An interpenetrated framework based on pentanuclear tetrahedral cluster with four-connected mdf network
    Deng, Jia-Jia
    Song, Bai-Qiao
    Liang, Jun
    Jiao, Yan-Qing
    Wu, Xue-Song
    Zhao, Liang
    Shao, Kui-Zhan
    Su, Zhong-Min
    INORGANIC CHEMISTRY COMMUNICATIONS, 2015, 60 : 82 - 86
  • [43] The (3,1)-ordering for 4-connected planar triangulations
    Biedl T.
    Derka M.
    J. Graph Algorithms and Appl., 2 (347-362): : 347 - 362
  • [44] Randomized Incremental Construction of Delaunay Triangulations of Nice Point Sets
    Boissonnat, Jean-Daniel
    Devillers, Olivier
    Dutta, Kunal
    Glisse, Marc
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 236 - 268
  • [45] Nice point sets can have nasty delaunay triangulations
    Erickson, J
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (01) : 109 - 132
  • [47] Nice Point Sets Can Have Nasty Delaunay Triangulations
    Discrete & Computational Geometry, 2003, 30 : 109 - 132
  • [48] A better upper bound on the number of triangulations of a planar point set
    Santos, F
    Seidel, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 102 (01) : 186 - 193
  • [49] Randomized Incremental Construction of Delaunay Triangulations of Nice Point Sets
    Jean-Daniel Boissonnat
    Olivier Devillers
    Kunal Dutta
    Marc Glisse
    Discrete & Computational Geometry, 2021, 66 : 236 - 268
  • [50] Randomized Incremental Construction of Delaunay Triangulations of Nice Point Sets
    Boissonnat, Jean-Daniel
    Devillers, Olivier
    Dutta, Kunal
    Glisse, Marc
    27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144