Constant free error bounds for nonuniform order discontinuous Galerkin finite-element approximation on locally refined meshes with hanging nodes

被引:17
|
作者
Ainsworth, Mark [1 ]
Rankin, Richard [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
a posteriori error estimation; discontinuous Galerkin method; constant free error bounds; ELLIPTIC PROBLEMS; ESTIMATORS;
D O I
10.1093/imanum/drp025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain fully computable constant free a posteriori error bounds on the broken energy seminorm and the discontinuous Galerkin (DG) norm of the error for nonuniform polynomial order symmetric interior penalty Galerkin, nonsymmetric interior penalty Galerkin and incomplete interior penalty Galerkin finite-element approximations of a linear second-order elliptic problem on meshes containing hanging nodes and comprised of triangular elements. The estimators are completely free of unknown constants and provide guaranteed numerical bounds on the broken energy seminorm and the DG norm of the error. These estimators are also shown to provide a lower bound for the broken energy seminorm and the DG norm of the error up to a constant and higher-order data oscillation terms.
引用
收藏
页码:254 / 280
页数:27
相关论文
共 42 条