PREDICTION OF COVID-19 SEVERITY IN SARS-COV-2 RNA-POSITIVE PATIENTS BY DIFFERENT ENSEMBLE LEARNING STRATEGIES

被引:1
|
作者
Bag, Harika Gozde Gozukara [1 ]
Kivrak, Mehmet [1 ]
Guldogan, Emek [1 ]
Colak, Cemil [1 ]
机构
[1] Inonu Univ, Dept Biostat & Med Informat, Fac Med, Malatya, Turkey
来源
ACTA MEDICA MEDITERRANEA | 2022年 / 38卷 / 02期
关键词
Classification; COVID-19; severity; ensemble learning; machine learning; prediction;
D O I
10.19193/0393-6384_2022_2_166
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: While the coronavirus only persists marginally for 95% of the infected cases, the remaining 5% are in critical or life-threatening conditions. This study aimed to design an intelligent model that predicts the severity level of the disease by modeling the relationships between the COVID-19 infection severity and the various demographic/clinical features of individuals. Materials and methods: A public dataset of a cross-sectional study including the demographic and symptomatological characteristics of 223 COVID-19 patients was used and randomly partitioned into training (75%) and testing (25%) datasets. During training, the class imbalance problem was solved, and the related factors with the COVID-19 severity were selected using the evolutionary method supported by a genetic algorithm. Neural Network (NN), Support Vector Machine (SVM), QUEST algorithms together with confidence weighted voting, voting, and highest confidence wins strategies (HCWS) were constructed, and the predictive power of models was determined by performance metrics. Results: Based on the performance indicators, among the individual models, the NN model outperformed SVM and QUEST algorithms in the training and testing datasets. However, ensemble approaches gave better predictions as compared to individual models according to all the evaluation metrics. Conclusion: The proposed voting ensemble model outperforms other ensemble and individual machine learning approaches for the severity prediction of COVID-19 disease. The proposed ensemble learning model can be integrated into web or mobile applications to classify the severity of COVID-19 for clinical decision support.
引用
收藏
页码:1085 / 1091
页数:7
相关论文
共 50 条
  • [21] SARS-CoV-2 RNA in exhaled air of hospitalized COVID-19 patients
    Lisa Kurver
    Corné H. van den Kieboom
    Kjerstin Lanke
    Dimitri A. Diavatopoulos
    Gijs J. Overheul
    Mihai G. Netea
    Jaap ten Oever
    Reinout van Crevel
    Karin Mulders-Manders
    Frank L. van de Veerdonk
    Heiman Wertheim
    Jeroen Schouten
    Janette Rahamat-Langendoen
    Ronald P. van Rij
    Teun Bousema
    Arjan van Laarhoven
    Marien I. de Jonge
    Scientific Reports, 12
  • [22] SARS-CoV-2 RNA in exhaled air of hospitalized COVID-19 patients
    Kurver, Lisa
    van den Kieboom, Corne H.
    Lanke, Kjerstin
    Diavatopoulos, Dimitri A.
    Overheul, Gijs J.
    Netea, Mihai G.
    ten Oever, Jaap
    van Crevel, Reinout
    Mulders-Manders, Karin
    van de Veerdonk, Frank L.
    Wertheim, Heiman
    Schouten, Jeroen
    Rahamat-Langendoen, Janette
    van Rij, Ronald P.
    Bousema, Teun
    van Laarhoven, Arjan
    de Jonge, Marien, I
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [23] Search for SARS-CoV-2 RNA in platelets from COVID-19 patients
    Bury, Loredana
    Camilloni, Barbara
    Castronari, Roberto
    Piselli, Elisa
    Malvestiti, Marco
    Borghi, Mariachiara
    KuchiBotla, Haripriya
    Falcinelli, Emanuela
    Petito, Eleonora
    Amato, Felice
    Paliani, Ugo
    Vaudo, Gaetano
    Cerotto, Vittorio
    Gori, Fabio
    Becattini, Cecilia
    De Robertis, Edoardo
    Lazzarini, Teseo
    Castaldo, Giuseppe
    Mencacci, Antonella
    Gresele, Paolo
    PLATELETS, 2021, 32 (02) : 284 - 287
  • [24] Presence of SARS-CoV-2 RNA in the Cornea of Viremic Patients With COVID-19
    Casagrande, Maria
    Fitzek, Antonia
    Spitzer, Martin S.
    Puschel, Klaus
    Glatzel, Markus
    Krasemann, Susanne
    Norz, Dominik
    Lutgehetmann, Marc
    Pfefferle, Susanne
    Schultheiss, Maximilian
    JAMA OPHTHALMOLOGY, 2021, 139 (04) : 383 - 388
  • [25] SARS-CoV-2 RNA in exhaled air of hospitalized COVID-19 patients
    van den Kieboom, C.
    Kurver, L.
    Lanke, K.
    Diavatopoulos, D.
    Overheul, G.
    Netea, M.
    Ten Oever, J.
    Van Crevel, R.
    Mulders-Manders, K.
    Van De Veerdonk, F.
    Wertheim, H.
    Schouten, J.
    Rahamat-Langendoen, J.
    Van Rij, R.
    Bousema, T.
    Van Laarhoven, A.
    De Jonge, M.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [26] Recurrence of positive SARS-CoV-2 in patients recovered from COVID-19
    Hoang, Van T.
    Dao, Thi L.
    Gautret, Philippe
    JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (11) : 2366 - 2367
  • [27] Rate and severity of suspected SARS-Cov-2 reinfection in a cohort of PCR-positive COVID-19 patients
    Slezak, Jeff
    Bruxvoort, Katia
    Fischer, Heidi
    Broder, Benjamin
    Ackerson, Bradley
    Tartof, Sara
    CLINICAL MICROBIOLOGY AND INFECTION, 2021, 27 (12) : 1860.e7 - 1860.e10
  • [28] Plasma SARS-CoV-2 RNA elimination and RAGE kinetics distinguish COVID-19 severity
    Deng, Xiaoyan
    Gantner, Pierre
    Forestell, Julia
    Pagliuzza, Amelie
    Brunet-Ratnasingham, Elsa
    Durand, Madeleine
    Kaufmann, Daniel E.
    Chomont, Nicolas
    Craig, Morgan
    CLINICAL & TRANSLATIONAL IMMUNOLOGY, 2023, 12 (11)
  • [29] SARS-CoV-2 Infectivity and Severity of COVID-19 According to SARS-CoV-2 Variants: Current Evidence
    Dao, Thi Loi
    Hoang, Van Thuan
    Colson, Philippe
    Lagier, Jean Christophe
    Million, Matthieu
    Raoult, Didier
    Levasseur, Anthony
    Gautret, Philippe
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (12)
  • [30] SARS-CoV-2 and COVID-19
    Sheng, Wang-Huei
    Ko, Wen-Chien
    Huang, Yhu-Chering
    Hsueh, Po-Ren
    JOURNAL OF MICROBIOLOGY IMMUNOLOGY AND INFECTION, 2020, 53 (03) : 363 - 364