Interfacial engineering of MoS2/TiO2 hybrids for enhanced electrocatalytic hydrogen evolution reaction

被引:27
|
作者
Song, Xiaolin [1 ]
Chen, Guifeng [1 ]
Guan, Lixiu [2 ]
Zhang, Hui [1 ]
Tao, Junguang [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Key Lab New Type Funct Mat Hebei Prov, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Sch Sci, Tianjin 300401, Peoples R China
关键词
ACTIVE EDGE SITES; PHOTOCATALYTIC ACTIVITIES; MOS2; TIO2; CATALYST; NANOSHEETS; CLEAVAGE; WATER;
D O I
10.7567/APEX.9.095801
中图分类号
O59 [应用物理学];
学科分类号
摘要
Herein, we show that the synergistic effect between MoS2 and TiO2 enhances the hydrogen evolution reaction ( HER) performance of their hybrids, which is tunable via interface engineering. Among several interfaces, MoS2/TiO2-H complexes exhibit the best HER activity. The observed Tafel slope of 66.9mV/dec is well in range of previous literature reports, suggesting a Volmer-Heyrovsky mechanism. Enhanced activities were attributed to abundant active sites at the interfaces, as well as improved charge transfer efficiency. Our results emphasize the roles that interfaces play in enhancing the HER activities of MoS2-based heterogeneous catalysts. (C) 2016 The Japan Society of Applied Physics
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts
    Deng, Heng
    Zhang, Chi
    Xie, Yunchao
    Tumlin, Travis
    Giri, Lily
    Karna, Shashi P.
    Lin, Jian
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (18) : 6824 - 6830
  • [32] Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction
    Yang, Linjing
    Zhou, Weijia
    Hou, Dongman
    Zhou, Kai
    Li, Guoqiang
    Tang, Zhenghua
    Li, Ligui
    Chen, Shaowei
    NANOSCALE, 2015, 7 (12) : 5203 - 5208
  • [33] Interface Engineering of 2D NiMOF-MoS2 Hybrids for Electrocatalytic Hydrogen Evolution
    Janardhanan, Jith C.
    Padmanabhan, Nisha T.
    Pillai, Suresh C.
    John, Honey
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (18) : 6890 - 6902
  • [34] Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction
    Muralikrishna, S.
    Manjunath, K.
    Samrat, D.
    Reddy, Viswanath
    Ramakrishnappa, T.
    Nagaraju, D. H.
    RSC ADVANCES, 2015, 5 (109) : 89389 - 89396
  • [35] Tuning interlayer spacing of MoS2 for enhanced hydrogen evolution reaction
    Guo, Shaohui
    Zhang, Yuanyuan
    Tang, Songwei
    Wang, Bilin
    Wang, Yijin
    Song, Yaru
    Xin, Xu
    Zhang, Youzi
    Li, Xuanhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 864
  • [36] MoS2-TiO2 Nanocomposites for Enhanced Photo-electrocatalytic Hydrogen Evolution
    Chacko, Levna
    Joseph, Anju
    Tadi, Kiran Kumar
    Kumar, Amar
    Narayanan, T. N.
    Aneesh, P. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (07)
  • [37] Field Effect Enhanced Hydrogen Evolution Reaction of MoS2 Nanosheets
    Wang, Junhui
    Yan, Mengyu
    Zhao, Kangning
    Liao, Xiaobin
    Wang, Peiyao
    Pan, Xuelei
    Yang, Wei
    Mai, Liqiang
    ADVANCED MATERIALS, 2017, 29 (07)
  • [38] Enhanced Hydrogen Evolution Reaction in Surface Functionalized MoS2 Monolayers
    Pak, Sangyeon
    Lim, Jungmoon
    Hong, John
    Cha, SeungNam
    CATALYSTS, 2021, 11 (01) : 1 - 9
  • [39] Synthesis of MoS2/CoSe2-x hybrids as electrocatalysts for hydrogen evolution reaction
    Wu, Huimin
    Shi, Lan
    Feng, Chuanqi
    Ding, Yu
    IONICS, 2022, 28 (03) : 1337 - 1345
  • [40] Enhancing electrocatalytic hydrogen evolution via engineering unsaturated electronic structures in MoS2
    Zhou, Qingqing
    Hu, Hao
    Chen, Zhijie
    Ren, Xiao
    Ma, Ding
    CHEMICAL SCIENCE, 2025, 16 (04) : 1597 - 1616