Fast computation of scattering maps of nanostructures using graphical processing units

被引:32
|
作者
Favre-Nicolin, Vincent [1 ]
Coraux, Johann [2 ]
Richard, Marie-Ingrid [3 ]
Renevier, Hubert [4 ]
机构
[1] Univ Grenoble 1, CEA, INAC, SP2M, Grenoble, France
[2] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France
[3] Univ Aix Marseille, IM2NP, CNRS, FST,UMR 6242, Marseille, France
[4] MINATEC, Grenoble INP, Mat & Genie Phys Lab, Grenoble, France
关键词
REVERSE MONTE-CARLO; DIFFUSE-SCATTERING; DIFFRACTION; ALGORITHMS; CRYSTALS; STRAIN; TRANSFORMS; PARALLEL; PATTERNS; ENERGY;
D O I
10.1107/S0021889811009009
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Scattering maps from strained or disordered nanostructures around a Bragg reflection can be either computed quickly using approximations and a (fast) Fourier transform or obtained using individual atomic positions. In this article, it is shown that it is possible to compute up to 4 x 10(10) reflections atoms s (1) using a single graphics card, and the manner in which this speed depends on the number of atoms and points in reciprocal space is evaluated. An open-source software library (PyNX) allowing easy scattering computations (including grazing-incidence conditions) in the Python language is described, with examples of scattering from non-ideal nanostructures.
引用
收藏
页码:635 / 640
页数:6
相关论文
共 50 条
  • [1] A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
    Griffiths, M. K.
    Fedun, V.
    Erdelyi, R.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2015, 36 (01) : 197 - 223
  • [2] A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
    M. K. Griffiths
    V. Fedun
    R. Erdélyi
    Journal of Astrophysics and Astronomy, 2015, 36 : 197 - 223
  • [3] Real-time computation of parameter fitting and image reconstruction using graphical processing units
    Locans, Uldis
    Adelmann, Andreas
    Suter, Andreas
    Fischer, Jannis
    Lustermann, Werner
    Dissertori, Gunther
    Wang, Qiulin
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 215 : 71 - 80
  • [4] FDTD calculations using graphical processing units
    Inman, MJ
    Elsherbeni, AZ
    Smith, CE
    2005 IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005, : 728 - 731
  • [5] ReaDDyMM: Fast Interacting Particle Reaction-Diffusion Simulations Using Graphical Processing Units
    Biedermann, Johann
    Ullrich, Alexander
    Schoeneberg, Johannes
    Noe, Frank
    BIOPHYSICAL JOURNAL, 2015, 108 (03) : 457 - 461
  • [6] Hyperspectral Processing in Graphical Processing Units
    Winter, Michael E.
    Winter, Edwin M.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048
  • [7] New Graphical Processing Technique for Fast Shadowing Computation in PO Surface Integral
    Rius, Juan M.
    Carbo, Alexis
    Bjerkemo, Jakob
    Ubeda, Eduard
    Heldring, Alexander
    Mallorqui, Jordi J.
    Broquetas, Antoni
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (05) : 2587 - 2595
  • [8] Experience of using graphical processing unit in power flow computation
    Daher Daibes, Joao Victor
    Brown Do Coutto Filho, Milton
    Stacchini de Souza, Julio Cesar
    Gonzalez Clua, Esteban Walter
    Zanghi, Rainer
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (06):
  • [9] Accelerating direct quantum dynamics using graphical processing units
    Penfold, T. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (30) : 19601 - 19608
  • [10] MHD code using multi graphical processing units: SMAUG
    Gyenge, N.
    Griffiths, M. K.
    Erdelyi, R.
    ADVANCES IN SPACE RESEARCH, 2018, 61 (02) : 683 - 690